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Figure 1: Animatomy is a high-end facial animation pipeline built on a novel face parameterization using contractile muscle
curves. We present the construction and fitting of the muscle curves to a set of dynamic 3D scans for an actor (a), using a
passive muscle simulation (b). Muscle contractions (strains) parameterize these scans and are used to learn a manifold of
plausible facial expressions (c). The strains, in turn, control skin deformation (d) and readily transfer expression from an actor
to characters. In production, the strains can be animated by performance capture (e) and animator interaction (f). ©Wētā FX.

ABSTRACT
We present Animatomy, a novel anatomic+animator centric rep-
resentation of the human face. Present FACS-based systems are
plagued with problems of face muscle separation, coverage, opposi-
tion, and redundancy. We, therefore, propose a collection of muscle
fiber curves as an anatomic basis, whose contraction and relaxation
provide us with a fine-grained parameterization of human facial ex-
pression. We build an end-to-end modular deformation architecture
using this representation that enables: automatic optimization of
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the parameters of a specific face from high-quality dynamic facial
scans; face animation driven by performance capture, keyframes,
or dynamic simulation; interactive and direct manipulation of facial
expression; and animation transfer from an actor to a character.
We validate our facial system by showing compelling animated
results, applications, and a quantitative comparison of our facial
reconstruction to ground truth performance capture. Our system
is being intensively used by a large creative team on Avatar: The
Way of Water. We report feedback from these users as qualitative
evaluation of our system.

CCS CONCEPTS
• Computing methodologies → Mesh models; Animation;
Graphics systems and interfaces.
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1 INTRODUCTION
The innate human ability to both perceive and convey the subtlest of
facial nuance makes animating an engaging anthropomorphic face
arguably the most challenging aspect of character animation. The
greater the rendered realism, the smaller the margin for animated
imperfection before the character irreversibly plunges into the
Uncanny Valley [MacDorman et al. 2009]. We present Animatomy,
a novel anatomy+animator centric 3D face modeling and animation
pipeline in use on Avatar: The Way of Water.1

Over the past few decades, the Facial Action Coding System
(FACS) [Ekman and Friesen 1978] has become a popular baseline
representation for facial animation. While FACS has allowed a level
of standardization and interoperability across facial rigs, FACS was
designed from a psychological standpoint to capture voluntary, dis-
tinguishable snapshots of facial expression, and has clear limitations
when applied to computer animation [Deng and Noh 2008; Seymour
2019]. FACS Action Units (AUs) have well-known problems with
anatomic fidelity (AUs that combine the action of multiple facial
muscles or do not involve facial muscles at all), localization and
animation control (AUs that can be redundant, opposing in action,
strongly co-related, or mutually exclusive), and facial deformation
(AUs only approximate the complex shape deformations of a hinged
jaw and flexible lips) [Parke and Waters 2008]. In practice, anima-
tors address these limitations ad-hoc and, as needed, augment FACS
with large, unwieldy instances of specific and corrective deformers.

Instead, we draw inspiration fromMimic [Hjortsjö and Salisbury
1970], an older, anatomically grounded language of facial expres-
sion. Mimic muscles are imagined as fibers, primarily around or
radially emanating from facial orifices (mouth and eyes), but also
attaching superficially to the skin, such as at the nasolabial furrow.
Facial expressions manifest as contractions of these mimic mus-
cles. Animatomy muscles are conceptually similar but explicitly
motivated by our goals of facial performance capture for high-end
animation: a data-driven workflow; anatomic plausibility; animator
control; deformation fidelity; and expression transfer.

We constructed our muscle-based parameterization by inverse
simulating a representative set of skeletal face muscles embedded
within a tetrahederalized flesh mask, similar to [Sifakis et al. 2005;
Srinivasan et al. 2021]. We then selected an artist-curated, minimal
yet meaningful set of muscle fiber curves to capture muscle contrac-
tion along pennation directions. Sheet muscles have fiber bundles
that can contract selectively, and these are captured using multiple
parallel fiber curves. We observed that, compared to contraction,
the bend and twist of muscle fiber curves were minimal. We thus
capture both the bending of muscle and the volumetric squash and
stretch orthogonal to the contracting muscle, by introducing curves

1While a film trailer is publicly viewable, we are unable to show footage or tests using
film assets before the film’s release later this year.

orthogonal to the muscle fibers, and attached to soft tissue in the
flesh mask. While this deviates from a strict anatomic mapping
of curves to muscle fibers, it facilitates an animator-friendly rep-
resentation of a deformable face as a homogeneous collection of
contractile 3D curves [Singh and Fiume 1998]. A unitless strain
value captures the change in length of an activated muscle curve
relative to its length in a neutral state. Our Animatomic face expres-
sion is thus parameterized by a vector of strains corresponding to
the 178 muscle fiber curves we define for a human face (Fig. 1).

Overview. Related work (§2) is followed by principles guiding
our system design (§3) and the creation of an actor face-rig using 3D
scanning, muscle curve fitting, and simulation (§4). We then present
our data-driven computation of a muscle strain-based face expres-
sion manifold and our strain-to-skin deformation algorithm (§5, §6).
We detail system components needed for high-end film production,
built atop our Animatomic face model (§7): animation using per-
formance capture; interactive face manipulation tools; and transfer
of expressive facial animation from the actor to other characters.
Our evaluation (§8) is both quantitative (parameter ablation and
ground-truth comparison) and qualitative (professional animator
critique). We also discuss limitations and future work (§9).

Contribution. We present a novel curve-based face representa-
tion, central to a complete face animation pipeline. Our system
is larger than the sum of its parts, designed to meet a judicious
combination of anatomic, artistic, and performance capture needs.

2 PRIORWORK
We broadly classify many decades of relevant research in facial
animation [Parke and Waters 2008] as follows.

Blendshapes and Facial Rigging. Blendshapes are an artist-sculpted
set of target faces, often aligned with FACS AUs, used extensively
in film and games over decades. Facial expressions are produced
as a linear combination of blendshapes [Lewis et al. 2014]. While
blendshapes give artists full control over the face, modeling and
animating a realistic face require a significant artistic skill. Adding
corrective shapes is common and high-end blendshape rigs are
unwieldy with many redundant, correlated, and mutually exclusive
shapes (e.g., 946 blendshapes used to animate ‘Gollum’ in the Lord
of the Rings [Raitt 2004]). In contrast, our muscle curves provide a
178-parameter facial representation that is rather compact.

The interactive manipulation of the high-dimensional space of
blendshape weights is also difficult, motivating research in control
layouts [Kim and Singh 2021] and inverse weight computation to fit
direct manipulation of the face [Lewis and Anjyo 2010] or sketched
facial features [Cetinaslan et al. 2015]. Further, blendshapes nei-
ther guarantee the plausibility of facial expressions nor span all
plausible expressions [Abdrashitov et al. 2020]. Animatomy admits
interaction with muscle curves, brush-based direct manipulation,
and a parametric manifold of plausible expressions using a muscle
simulation to fit a comprehensive corpus of dynamic face scans.

Facial rigging generally refers to the various controls, including
skeletal joints (e.g., to control a jaw and eyeballs), and other deform-
ers, to manipulate facial expressions [Orvalho et al. 2012]. Several
deep-learning-based rig approximations were proposed to replace
the complexity of facial rigs [Bailey et al. 2020; Song et al. 2020]. In

https://doi.org/10.1145/3550469.3555398
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Figure 2: Animatomy provides a complete face animation pipeline to meet a sensible combination of different user groups’
anatomic, artistic, and performance capture needs. Essential techniques presented in this paper are marked in red. ©Wētā FX.

contrast, our muscle curves complement skeletal deformation and
operate as part of a typical animation chain.

Data-driven and Morphable Models. Statistical modeling of 3D
faces ranges from early Principal Component Analysis (PCA) based
morphable models to modern techniques that employ deep learn-
ing [Egger et al. 2020]. A realistic 3D facial model can be recon-
structed from images [Feng et al. 2021; Kemelmacher-Shlizerman
and Seitz 2011; Luo et al. 2021], video [Grassal et al. 2021; Lombardi
et al. 2018; Suwajanakorn et al. 2014, 2015], and scanned data [Booth
et al. 2016; Dai et al. 2020; Li et al. 2017; Paysan et al. 2009]. These
techniques generally begin with a template face mesh and deform
it to fit the dataset while optimizing model parameters. Recent ap-
proaches also aim to model shape and appearance simultaneously
from large corpora [Egger et al. 2020].

The FLAME [Li et al. 2017] model covers a range of face modeling
contexts, and the approach has been extended to support control-
lable deformation [Feng et al. 2021] and expression realism [Ab-
drashitov et al. 2020; Schwartz et al. 2020]. Recently, non-linear
deep face models [Chandran et al. 2020, 2022b; Jiang et al. 2019; Li
et al. 2020; Ranjan et al. 2018] improve facial expressivity, and local
patch based approaches [Chandran et al. 2022a; Wu et al. 2016]
enable accurate facial reconstruction from small training datasets.
While these models are typically not amenable to animator editing,
we draw inspiration from them in our formulation of a muscle
strain-based expression manifold and skin deformation.

Muscle-based PhysicalModel. High-resolution physics and anatomy-
based simulations can typically be used to account for collisions,
external forces, and dynamic behavior, trading accuracy for speed
and animation friendliness. Barrielle et al. [2016] parameterize a
face animation with the external forces acting upon it while oth-
ers [Bao et al. 2019; Ichim et al. 2017; Sifakis et al. 2005] integrate
simulations of muscles or their activations within their models. We
chose to use simulations only to create a large dataset with which
we trained an approximated deformation model of muscle fibers.

3 SYSTEM DESIGN PRINCIPLES AND GOALS
In consultation with face modelers, riggers, and animators, we de-
sign Animatomy (Fig. 2) to reconcile and balance anatomic, artistic,
and performance animation design requirements.
• Artistic Control:While the performance capture of physical actors
principally animates Animatomy faces, we require the ability
of animators to edit the results and to hand-craft animation in
scenarios where physical capture is difficult. Our system is thus

designed as a set of deformation nodes integrated into production
pipelines in a commercial animation system like Maya. Thus, our
face representation must allow forward (inside-out), and inverse
(outside-in) type animation control of facial expressions.

• Anatomically Grounded Representation: We aim to design a sys-
tem for anthropomorphic faces strongly tied to a human face’s
musculature. Beyond a generic representation of 3D geometry,
we thus desire a parameterization that explicitly embodies the
anatomy of the human face.While many surface and volumemus-
cle representations exist, we require that the simulated behavior
of the muscle is captured for efficient kinematic control.

• Data-driven Workflow:We need an end-to-end automated system
based on a face representation that generates high-resolution
faces from artist-curated 3D scans. All system components aim
to optimize the face to conform to an actor’s input data.

• Transferable Animation: The visual effects pipeline for motion-
captured character animation relies on a two-step process. A
digital double of the actor is first made and animated to match
the captured performance with high fidelity before transferring
the animation to the character, with minimal user oversight.

Animatomy reconciles the above needs by using 3D curves to
model muscle fibers and curves orthogonal to muscle fibers to
capture muscle volume and bending (Fig. 1(b, d)). The curves are
passively simulated within a volumetric musculature to conform
to input 3D skin data. The contractile behavior of the simulated
curves provides an effective low-dimensional parameterization of
178 muscle strains that transfer well across diverse face morphology.
Animation transfer across diverse but humanoid characters using a
shared muscle strain space is effortless and accurate, requiring less
user correction than any prior system known to us.

4 DATA PREPARATION
We build our face model using machine learning and optimiza-
tion processes trained on a significant amount of curated ground
truth data. In particular, we need corresponding sequences of actor
meshes, joint transformations, and simulated muscle fibers to build
a production facial rig, as shown in Fig. 3.

Actor Dynamic Scans. We reconstruct 3D shapes of an actor’s face
using photogrammetry (3DF Zephyr [2022]) to model the rest state
of skin, eyes, teeth, and maximal ranges for unassisted jaw opening,
protrusion, and lateral movement. Our scanning follows the Light-
Stage [Debevec et al. 2000] setup, and includes post-processing
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the raw scans. A skull is fit inside the scanned model by approxi-
mating tissue depth data with medical/forensic pegs placed on the
skin and skull, and varying peg-length based on actor age, gender,
ethnicity, and Body Mass Index (BMI) [De Greef et al. 2006]. The
actor is asked to perform FACS actions, a comprehensive range
of emotions, and utter various phonemes and Harvard sentences
[Rothauser 1969], that result in a reconstructed 3D facial dataset:
comprising 80 motion clips (≈7,000 frames) in which facial actions
(FACS+emotions) and speech are present in equal proportion. We
get a temporally-aligned mesh sequence using sequential registra-
tion (R3DS Wrap [2022]), and head movement removed by rigid
stabilization [Beeler and Bradley 2014].

Eyes and Jaw Alignment. We solve mandible movement using
a complex non-linear jaw rig [Zoss et al. 2018] by running a least-
squares optimization to fit the jaw rig (§5.5) to the mesh sequence.
The resulting animation is verified by observing teeth alignment
against images captured from each camera. We compare soft tis-
sue depth between the skin surface and mandible to verify frames
where the surrounding soft tissue occludes the teeth. The resulting
3D transformations represent the mandibular movement for the
performed action or speech. The transformations are also used to
reconstruct the inner mouth occluded or shadowed in the original
photogrammetry. Our eye model approximates the actor’s sclera,
cornea, and iris. Eye gaze direction is adjusted in each frame of the
mesh sequence by rotating the eyeballs so that the iris model aligns
with the limbal ring and pupil, visible on the images captured from
each camera. Multiple camera angles are used to verify the align-
ment and account for light refracted by the cornea. Well-aligned
rotations for the eyes allow us to correct for minor deformation
artifacts in the surrounding geometry. A small frontal translation
(eye bulge) is tied to eye rotation to enhance eye realism.

Actor Dynamic Muscle Simulation. To parameterize the fiber-
based muscle model, we first define a tetrahedral volume discretiz-
ing the soft tissue of the face in the rest-pose. This volume con-
forms to the skin and the bones similar to [Ichim et al. 2017; Srini-
vasan et al. 2021]. A passive, quasi-static simulation is then per-
formed to this volume for whole scan sequences with skin vertices
and the skull enforced as positional constraints for tetrahedral
elements [Lesser et al. 2022]. We simulate 135K tetrahedrons con-
strained with multiple positional, sliding, and collision constraints.
We compute a barycentric embedding for control points for the

Figure 3: Data example: actor mesh, volumetric represen-
tation, muscle fibers with eye and jaw alignment, and all-
inclusive model. ©Wētā FX.

anatomic muscle curves [Zarins 2018], within the rest pose tetra-
hedral volume. For each simulated frame, we use their barycentric
coordinates to extract simulated muscle curves.

5 ANATOMICALLY INSPIRED FACIAL MODEL
Animatomy deformation architecture is inspired by the FLAME
[2017] and uses a similar vertex-based skinning approach with
corrective shapes, in our case with 𝑁 = 85,000 vertices, and 𝐾 = 3
joints (jaw and eyeballs). The FLAME system relies on PCAweights
to drive facial animation, reducing shape and expression spaces
to their principal components. Our model, in contrast, is based
on muscle strains, which provide an anatomically meaningful and
animator-friendly basis to represent and control facial expressions.

Function 𝑀 ( ®𝜃, ®𝛾) : R | ®𝜃 |× | ®𝛾 | → R3𝑁 describes our model, map-
ping a vector describing pose (jaw and eyes transformations) ®𝜃 ∈
R |

®𝜃 | and expression (encoded by muscle strains ®𝛾 ∈ R | ®𝛾 | ), to 𝑁
vertices. As shown in Fig. 4, the model consists of a neutral mesh
𝑇 ∈ R3𝑁 (unposed and expressionless); the corresponding rest-pose
vector ®𝜃∗; corrective pose blendshapes 𝐵𝑃 ( ®𝜃 ;P) : R | ®𝜃 | → R3𝑁

to correct pose deformations that cannot be produced by linear
blend skinning (LBS); strain-driven blendshapes 𝐵𝐸 (®𝛾 ; E) : R | ®𝛾 | →
R3𝑁 capturing facial expressions; and a strain-jaw autoencoder
𝐴𝐸Φ (®𝛾, ®𝜃 ) : R | ®𝛾 |+|

®𝜃 | → R | ®𝛾 | (parameterized by its weights Φ), to
enforce non-linear muscle strain behavior.𝑀 is formulated as:

𝑀 ( ®𝜃, ®𝛾) =𝑊 (𝑇𝑃 ( ®𝜃, ®𝛾), 𝐽 , ®𝜃,W),

𝑇𝑃 ( ®𝜃, ®𝛾) = 𝑇 + 𝐵𝑃 ( ®𝜃 ;P) + 𝐵𝐸 (𝐴𝐸Φ (®𝛾, ®𝜃 𝑗𝑎𝑤); E).
𝑇𝑃 denotes the addition of pose and expression displacements to
the neutral mesh (§5.2, §5.3) and𝑊 (𝑇𝑃 , 𝐽 , ®𝜃,W) is a skinning func-
tion [Loper et al. 2015] to transform the vertices of𝑇𝑃 around joints
𝐽 ∈ R3𝐾+3, linearly smoothed by skinning weightsW ∈ R𝑁×𝐾 .

5.1 Muscle Features (Strains)
From each muscle curve of length 𝑠 , we derive a unitless real-valued
strain 𝛾 = (𝑠 − 𝑠) /𝑠 , where 𝑠 is the length of the muscle curve at the
neutral frame (rest-pose). Strain in our context, is thus a deviation
from a muscle curve’s rest-pose length. A negative/positive strain
is thus a muscle contraction/relaxation relative to its rest-pose
tension. The strain values for all the |®𝛾 | muscles at frame 𝑡 are
grouped together in a vector ®𝛾 (𝑡 ) , and we define Γ = {®𝛾 (𝑡 ) |𝑡 ≤ 𝑇 }
for a given sequence of 𝑇 frames.

5.2 Eyes and Jaw Base Deformation
Let 𝑅( ®𝜃 ) : R | ®𝜃 | → R9𝐾+3 be a function from a pose vector ®𝜃 (corre-
sponding to jaw and eyeballs rig controls) to a vector containing the
concatenated elements of all the corresponding rigid transformation
matrices (R3×3 rotations for eyeballs, and R3×4 rigid transforma-
tion for the jaw). Let also ®𝜃∗ be the rest pose, corresponding to the
neutral frame. The pose blendshape function is then defined as

𝐵𝑃 ( ®𝜃 ;P) = ∑9𝐾+3
𝑘=1 (𝑅𝑘 ( ®𝜃 ) − 𝑅𝑘 ( ®𝜃∗))𝑃𝑘 ,

where 𝑅𝑘 ( ®𝜃 ) and 𝑅𝑘 ( ®𝜃∗) denote the 𝑘-th element of 𝑅( ®𝜃 ) and 𝑅( ®𝜃∗),
respectively. The vector 𝑃𝑘 ∈ R3𝑁 describes the corrective vertex
displacements from the neutral pose activated by 𝑅𝑘 , and the pose
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space P = [𝑃1, . . . , 𝑃9𝐾+3] ∈ R3𝑁×(9𝐾+3) is a matrix with all cor-
rective pose blendshapes.

5.3 Strain-to-Skin Deformation Matrix
Linear blendshapes model the strain-to-skin deformation matrix to
produce skin expressions as

𝐵𝐸 (®𝛾 ; E) =
∑ | ®𝛾 |
𝑖=1 𝐸𝑖𝛾𝑖 = E®𝛾,

where E = [𝐸1, . . . , 𝐸 | ®𝛾 | ] ∈ R3𝑁×| ®𝛾 | denotes the optimized strain-
to-skin deformation basis. These blendshapes are driven only by
the strain vector and not by pose. §5.4 describes how and why the
autoencoder first processes this strain vector.

5.4 Strain Autoencoder
Though the underlying concept of muscle elongation or contraction
might be intuitive, driving a facial expression with the strain vector
is not always straightforward. We utilize an autoencoder (AE) to
assist artists by constraining the strain vector to remain within
the boundaries of plausible face animation, and we call this space
the expression manifold. Human interpretation defines plausibility
here, and this manifold is thus estimated with a curated sampling of
multiple facial expressions and their corresponding strain vectors.

The purpose of the AE is to perform a projection onto this space
without being restrictive. It should naturally support the animators
in directing any desired facial expression as long as they remain
within the manifold while preventing mistakes and incorrect ma-
nipulations from producing uncanny expressions. To achieve this
behavior, we train a small-scale neural network of three encoding
and three decoding layers, which first project the input vector into a
latent space before reconstructing the strain values. The latent space
is about two times smaller in dimension than the input space to
apply a lossy compression and force the AE to exhibit the projecting
behavior. The strain vector lacks a structure we could leverage in
our network; hence we rely solely on dense (fully-connected) layers
and add cELU and Tanh activation functions for non-linearity.

Because of the natural predisposition of specific unrelated facial
muscles to be activated in unison, like the lip corner puller causing
the eyes to squint, the AE tends to learn some—and replicates these–
regional contaminations, which are undesirable for artistic control.
In order to mitigate this issue and enforce some form of localized
influence (changing a muscle should not affect remote parts of the
face), we partition the strain vector ®𝛾 into two regions: the muscles
related to the upper (resp. lower) part of the face are grouped in the
vector ®𝛾𝑢 (resp. ®𝛾𝑙 ). There is no overlap between the regions; hence
|®𝛾 | = |®𝛾𝑢 | + |®𝛾𝑙 |. Similarly, the autoencoder is comprised of two
separate autoencoder networks with the structure described above,
one for each partition of ®𝛾 . Note that we refer to the autoencoder
in a singular form due to the shared properties between the two.

The AE responsible for processing the lower vector ®𝛾𝑙 (resp.
upper) is conditioned with the jaw pose (resp. eyes pose). The rigid
jaw transformation is part of the input but not of the output and
only serves to stabilize the AE with its ground-truth nature. The
output of both AE networks is concatenated together to produce
the final strain vector, which then drives the expression blendshape.
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Figure 4: Animatomy facial model. AE: autoencoder, FCL:
fully connected layer, LBS: linear blend skinning. ©Wētā FX.

5.5 Jaw Proxy Model
A facial rig to animate accurate jaw animation relies on a complex
non-linear function [Zoss et al. 2018], which maps the 3D jaw
controls to the applied 6D rigid transformation. It is embedded
deep inside the jaw rig and cannot easily be formulated analytically.
Because we use gradient methods to train and solve our model
(respective §6 and §7.1), end-to-end differentiability is indispensable.
Consequently, we approximate themapping with an easily trainable
and infinitely differentiable Radial Basis Function (RBF) network 𝜒 .

The rigid jaw transformation to map to is a 6D vector (translation
and axis-angle rotation). We adopt the Gaussian kernel as the RBF.
Let 𝜇 and 𝜎 be its parameters and R3 be its input space:

∀𝑝, 𝜇, 𝜎 ∈ R3×3×1, 𝑔𝜇,𝜎 (𝑝) = exp
(
−𝜎2 ∥𝑝 − 𝜇∥2

)
.

Given the parameters {𝜓𝑖 , 𝜇𝑖 , 𝜎𝑖 |𝑖 ≤ 𝑁 } ∈ R6 × R3 × R and the
number of neurons𝑀 = 50, we have the RBF network 𝜒 :

∀𝑝 ∈ R3, 𝜒 (𝑝) =
∑𝑀

𝑖=1𝜓𝑖 ·𝑔𝑖 (𝑝 )∑𝑀
𝑖=1 𝑔𝑖 (𝑝 )

, with 𝑔𝑖 = 𝑔𝜇𝑖 ,𝜎𝑖 .

6 MODEL TRAINING
The unknown parameters of our model are the LBS weightsW =

{𝜔𝑖𝑘 } ∈ R𝑁×𝐾 , the pose correction blendshapes P = {𝑃𝑘 |𝑘 ≤ 𝐾},
the strain-to-skin expression deformation matrix E = {𝐸𝑠 |𝑠 ≤ |®𝛾 |},
and the AE weight parameters Φ, which we train successively in
this order on a dataset of around 7,000 corresponding ground truth
meshes 𝑉 , poses ®𝜃 , and strain vectors ®𝛾 .

We first train the LBS weights to minimize



𝑉 −𝑊 (𝑇, 𝐽 , ®𝜃,W)




.
This is not enough to account for all pose-related deformations, so
we train the pose correction blendshape on the residual error by
minimizing




𝑊 −1 (𝑉 ) −𝑇 − B𝑃 ( ®𝜃,P)



 of the unposed mesh. Note,

our LBS function𝑊 is invertible because the 𝐾 weight maps parti-
tion the skin mesh vertices. Once all pose-related deformations are
computed, the residual error is captured by the expression blend-
shape, which minimize




𝑉 − B𝐸 (®𝛾, E)



, where 𝑉 is the unposed

mesh whose norm we minimized in the previous step. At this stage,
we optimize E and fine-tune ®𝛾 to have the lowest error (§A.3).

The loss functions weminimize typically also have regularization
terms that reduce the influence of the parameters over specific
outputs, primarily to reduce the amount cross-talk. The training
losses are further detailed in §A. When the three training steps are
done, we have𝑉 =𝑊 (𝑇 +B𝑃 ( ®𝜃,P)+B𝐸 (®𝛾, E)) with high accuracy.

To perform a projection as described in §5.4, we train the AE
to fit on the training strains. This learns a latent representation
of the manifold implicitly defined by our ground truth samples
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(all plausible expressions). Consequently, we preserve the strains
within this implicit space and correct those that do not conform
to the manifold. Thus, the equality 𝐴𝐸Φ (𝛾) ≈ 𝛾 holds true for
plausible expressions only. In addition, the neutral shape is critical
for the animators, and its corresponding strain vector 𝛾0 has to be
perfectly preserved by the AE. Hence we must enforce the equality
𝐴𝐸Φ (𝛾0) = 𝛾0 with a simple implementation trick (see §A.4).

7 USE IN FILM PRODUCTION
7.1 Performance Capture Driven Animation
We animate the actor’s digital double that matches the facial ex-
pressions with very high fidelity and then transfer the animation to
the character model. We find the optimal pose and strain inputs for
each given frame, as shown in Fig. 5. Given the 3D-tracked motion
capture facial markers, we first build target meshes that explain the
given markers the best. Mapping facial meshes to marker space is
a projection; hence its inverse is under-constrained and ill-defined,
but we leverage our training dataset [Li et al. 2013; Seol et al. 2016]
to find the best pseudo-inverse for our use case (see §B.1).

Our facial model is end-to-end differentiable by design; hence we
solve this inverse problem with gradient descent as a two-step pro-
cess. The first step (§B.2) computes the pose inputs ®𝜃 (eyes rotations
and jaw controls), and our jaw proxy model (§5.5) plays a central
role in computing the gradients. The solver at this stage captures
all skin deformations correlated to the joints’ rigid transformations.
We achieve this by keeping the strains constant equal to the neutral
vector 𝛾0. The resulting poses can then be projected into camera
space and compared to the shot images. Here artists can visually
validate the results, and manually re-align the teeth, if further ac-
curacy is required. The second step (§B.3) fits the strains to capture
all residual skin deformation. Implausible expressions are avoided
by adding a regularization term to keep strain values within the
space that the AE was trained to preserve. In the absence of artist
validation, multiple alternating iterations of the two steps can yield
better results. Our solver assumes coherent sequences instead of
individual frames to enforce temporal coherence. When solving
long shots (≥ 1𝐾 frames), we avoid memory issues by partitioning
the sequence into tractable sub-sequences, blended afterward.

7.2 Tools for Animator Interaction
The inherent ability of a compact set of muscle strains to fully
describe any facial expression illustrates its potential to represent
an animated face. Nevertheless, it is a significant paradigm shift
for animators, experienced in using FACS-blendshapes to animate
the face. To facilitate adoption, we developed a set of brush-based,
animator-centric tools, to interface with our facial system in Maya.
The tools operate either on the strains (muscle manipulation; inside-
out) or the mesh (direct manipulation [Lewis and Anjyo 2010];
outside-in). They interact locally with the facial model, using a
radial, brush-influence area around the mouse cursor (see Fig. 1(f)).
The length of the stroke can modulate the strength of the brush,
and a symmetric mode optionally mirrors the effect of the stroke,
either bilaterally, or radially around the mouth and eyes.

7.2.1 Muscle Animation. Our Animatomy tool-set operates at var-
ious levels of abstraction. At the finest level users have complete

control over individual muscle strains. Here muscle curves dis-
played beneath the skin surface, can be contracted/ elongated using
brush strokes, to interactively deform the mesh.

7.2.2 Strain-based Pose Library. Analogous to FACS-blendshape
control, the pose brush tool provides high level expression control.
A pose is defined by a set of associated strain values. Animators
can curate a pose library with typical expressions for each facial rig.
Selected strains of these poses can be dialed in/out towards their
absolute values, or relative to the current facial expression.

7.2.3 Direct Manipulation. At an abstract level, the direct manipu-
lation tool allows artists to sculpt mesh vertices directly to desired
expressions. The brush strokes here, directly deform mesh vertices
to provide a target skin mesh. Similar to the inverse optimization
presented in §7.1 and §B (but without a temporal term), we compute
strain values as well as jaw+eye controls that best-fit the target
mesh. Our GPU-based implementation provides near real-time per-
formance (≈ 15 fps), suitable for interaction, but costlier than the
forward deformations using strain-based brushes.

7.3 Actor-to-Character Transfer
Our pipeline foresees a different model and rig for the actor and the
character. To maximize the parity between an actor and a character
face in the animation transfer stage, we strategically design our
character training process to share the corresponding actor’s under-
lying muscle behavior. To achieve this, we perform shape transfer
before the character training stage to perfectly align transferred
skin meshes with the actor’s dataset in the correct order. Then,
instead of considering an independent set of the character’s muscle
curves in the training stage, we use the actor’s strain values and
strain autoencoder to optimize the strain-to-skin blendshapes (§5.3,
§5.4). Consequently, the final character facial model will have the
shared strain autoencoder identical to the actor (see Fig. S4).

7.3.1 Shape Transfer. We utilize cage-based transfer [Orvalho et al.
2008] to transfer the character’s skin from the actor. We first calcu-
late a correspondence matrix using RBF between the actor and the
character neutral shape at cage resolution. When the proportion of
specific regions of the actor’s and character’s face is similar, we can
compute multiple such correspondence matrices. Handling the eye
and jaw regions separately for example, using user-defined weight
maps, can allow more accurate expression transfer for those parts.

We also fit the actor’s jaw rig to the character and use it to com-
pensate for the deviation in teeth topography and skull anatomy.
We compute LBS weights for the jaw joints from an example scan
of the actor and use the same UV-based weights for the character.
Given matching jaw set-ups, we unpose the jaw rotation to handle
the substantial movement around the mandible region that is not
appropriately captured by the cage displacements. This unposing
stage is also helpful in aligning the rigid inner mouth regions.

To fine-tune specific expressions and increase the precision and
fidelity often required by art direction, users can add a small number
of guide shapes (Fig. 6). Given approximately ten pairs of match-
ing actor and character guide shapes (similar to corrective shapes),
we express each actor scan as a linear combination of the neutral
and the guide shapes. We then refine the corresponding character
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Figure 5: The actor’s performance (gray) is solved for 340 markers from validation ground-truth expressions (blue). ©Wētā FX.

shape by layering a linear combination of delta displacements com-
puted from the character’s transferred guide shapes with the same
weights (see §C of the supplemental material for further technical
detail). Multiple Na’vi characters in Avatar: The Way of Water were
successfully transferred using no more than 20 guide shapes.

7.3.2 Animation Transfer. As an actor and a corresponding charac-
ter pair share their strain space from the training stage, transferring
animation from one to the other is trivial. We can directly connect
the strain and control parameters between the actor and the charac-
ter for real-time animation transfer. Note that no expression cloning
or re-targeting, commonly used in FACS-based systems [Kim et al.
2021; Ribera et al. 2017; Seol et al. 2012], is necessary.

Figure 6: Actor, character without guide shapes and with
fixed mouth via guide shapes (from left to right). ©Wētā FX.

8 EVALUATION
8.1 Quantitative Evaluation
8.1.1 Strain and Latent Space Dimensions. The choice of 178 strains
was an artist-curated trade-off between reconstruction accuracy,
anatomic completeness and animator-control. More than 200 strains
add redundant complexity for artists and less than 130 strains pre-
vent accurate reconstruction (Fig. S7), especially around the mouth.
We also experimentedwith the latent space size of our autoencoders,
settling on half of the input size, to balance reconstruction accuracy
of training data and tolerance for implausible facial expressions.

8.1.2 Animatomy vs. FACS-based model. We compared our 178
strain Animatomy solver (see §7.1), against a FACS-blendshape
solver (a variant of [Lewis and Anjyo 2010] using 200 target shapes
chosen from the training data). Animatomy reconstructed unseen
ground-truth expressions better than the FACS-based solution, as
shown by the mean-squared vertex error (maximum vertex error
in parenthesis) for both models below.

(unit: mm) Shot 1 Shot 2 Shot 3
Animatomy 0.378 (2.751) 0.239 (2.096) 0.257 (2.255)

FACS 0.521 (2.794) 0.390 (2.111) 0.490 (3.139)

8.2 Artist Feedback
Animatomy is presently in intensive production use on over a

dozen speaking humanoid characters of varying proportions for
Avatar: The Way of Water. Below we briefly distill free-form feed-
back (guided by questions in the supplement §D) solicited from
four seasoned experts on all aspects of our system.

8.2.1 Actor Face Model and Rig (Puppet) Creation (§4).

+ Muscle strains simulated on dynamic scans produce a highly
accurate reconstruction of a scanned actor, superior to FACS-
blendshape systems with comparable data; Muscle curves are a
good spatial proxy for selection, visualization, deformation, and
reinforce artist knowledge of facial anatomy; Modular workflow
aids in model troubleshooting and allows selective improvement.

- Scan protocol of ≈ 80 clips can be time-consuming for celebrity
actors and computationally expensive to process; Dynamic scans
are temporally unique to actors and hard to re-purpose.

8.2.2 Performance Capture Driven Face Animation (§7.1).

+ Extremely high-quality 3D face reconstruction, faithful to actor
performance, in nuance, subtlety and timing; Significantly less
manual fix-up better than existing FACS-blendshape systems.

- Requires animator familiarizationwith an anatomical strain basis;
Animators may have to stray off the strain manifold, as actors
can be more expressive on set than during a 3D scan session.

8.2.3 Interactive Face Manipulation (§7.2).

+ Brush-based tools provide users a familiar direct manipulation
interface, while automatically computingmuscle strains to realize
the edited skin; Keyframe editing of muscle strains effective
for generating on-model (manifold) animation; Creation from
scratch is harder using strains than a pose library, making the
strain-based pose library a valuable tool.

- Spatially localized editing of facial expression off-model (mani-
fold) can be difficult to control, if projecting muscle strains back
onto the face manifold (§5.4).

8.2.4 Actor to Character Transfer and Animation (§7.3).

+ Strains are robust across a wide range of facial feature shapes
and proportions; Low artist effort in authoring guide shapes.

- Consistent and repeatable poses in the actor data are important,
to get stable weights for each guide shape.

9 DISCUSSION AND CONCLUSION
Limitations. Active production use is a strong validation of Ani-

matomy, but also exposes limitations. The balance between muscle
co-relation and localization on the face remains a challenge. We
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developed our muscle strain auto-encoder and strain to skin de-
formation using fully connected networks to capture global face
co-relations as a counterpoint to arbitrarily local blendshape ex-
pressions. This can prove problematic for animators looking to
make spatially localized edits to the face. While muscle curves
provide some intuition for animators, they prefer working with
facial poses when quickly blocking animations from scratch. We
have thus developed a tool to compute strain values for posed face
libraries. Additionally, while actor muscle strains transfer well as-is
to characters with significantly different feature proportions, we
do assume a morphology similar to the human face.

Future Work. As a new production system, there are many av-
enues for future work including reducing the number of dynamic
scans needed to train an actor rig; training actor-rigs using a sin-
gle 3D scan and a large corpus of film clips of the actor; enabling
the muscle curves to be dynamically actuated by muscle impulse;
extending our muscle curve model which currently stops below
the chin, to extend into the neck and possibly the entire body (cur-
rently parameterized by a typical joint skeleton); and investigating
other network architectures, such as meshCNNs [Hanocka et al.
2019] to better control both spatial muscle localization, and global
neurological co-relation between muscles, when deforming skin.

Conclusion. In summary, we have presented a successfully de-
ployed, high-end facial animation system Animatomy, that is a
departure from FACS-blendshape systems. Our system, based on
a novel muscle curve representation of the face, enables fine grained,
anatomically plausible animation control, and straightforward trans-
fer of animation from an actor to a virtual character.
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