
EUROGRAPHICS 2025 / A. Bousseau and A. Dai
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 2

A unified multi-scale method for simulating immersed bubbles

Joel Wretborn1,2 , Alexey Stomakhin1 , and Christopher Batty2

1 Wētā FX
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Figure 1: Overturning barrel. An inverted air-filled barrel under water is tipped upright. The resulting bubbles proceed to rise, with some
collecting in large hero shapes and others dispersing, mixing with the water into diffuse regions. Our method treats this scenario with a single
unified discretization, allowing bubbles to transition smoothly between the two regimes. The right image shows a zoomed-in version of the
simulation on the left. ©Wētā FX

Abstract
We introduce a novel unified mixture-based method for simulating underwater bubbles across a range of bubble scales. Our
approach represents bubbles as a set of Lagrangian particles that are coupled with the surrounding Eulerian water volume.
When bubble particles are sparsely distributed, each particle, typically smaller than the liquid grid voxel size, corresponds
to an individual spherical bubble. As the sub-grid particles increase in local density our model smoothly aggregates them,
ultimately forming connected, fully aerated volumetric regions that are properly resolved by the Eulerian grid. We complement
our scheme with a continuous surface tension model, defined via the gradient of the bubbles’ local volume fractions, which
works seamlessly across this scale transition. Our unified representation allows us to capture a wide range of effects across
different scales—from tiny dispersed sub-grid air pockets to fully Eulerian two-phase interfacial flows.

CCS Concepts
• Computing methodologies → Physical simulation;
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1. Introduction

Underwater bubbles are a captivating natural phenomenon. From
an explosive air burst from a breathing scuba diver to a swirly aer-
ated flow in the aftermath of a crashing wave, bubble dynamics are
rich with visually appealing characteristics at a multitude of scales.
It is this variety of scales and unique behaviors associated with bub-
bles that make them so attractive to visual effects practitioners, yet
so challenging to simulate numerically.

A common strategy to simulate bubble dynamics is to solve the
two-phase fluid equations of motion on an Eulerian grid. In the
engineering literature the liquid volume is often represented with
either volume-of-fluid (VOF) (e.g., [DKP16; TSG15; KLK22])
or level set approaches [OF02; EFFM02], while the computer
graphics community nowadays tends to prefer hybrid marker-based
methods [BB12; GAB20; SWBD20; SLW*23] for better interface
tracking at large time steps. We label this family of approaches as
hero methods because they are widely used in visual effects for
bubbles near a camera, where the dynamics of the air-water inter-
face are of critical importance.

Visual effects artists often push grid resolutions of hero methods
down to as fine as 1 mm per voxel to capture as much of the inter-
face dynamics as possible. Although recent work has aggressively
sparsified the fluid domain to simulate only where bubbles are
present [SWBD20; SLW*23; FSWW24], the computational cost
at such extreme resolutions still limits the total air-water volume
that can be simulated at once. As a result, when there are many
small dispersed bubbles scattered throughout a larger water vol-
ume, these costs quickly become prohibitive and necessitate an al-
ternative simulation strategy. We refer to such regions as diffuse
since the presence of these clouds of tiny bubbles tends to create a
foggy appearance. Diffuse bubble flows of this type are commonly
found in turbulent and aerated regions, such as those that surround
a whale after a breach.

The state of the art for treating diffuse regions is to introduce
massful† sub-grid particles representing bubbles coupled to the Eu-
lerian water phase [KSK10; PAKF13; DB17; TGK*17; WFS22].
With such diffuse methods, satisfying results can typically be
achieved with Eulerian grid resolutions on the order of centime-
ters per voxel, which makes it feasible to simulate large volumes of
water with millions of bubbles.

Visual effect artists therefore tend to reserve hero methods for
close-up camera shots where the bubbles are the focus, and diffuse
methods for faraway shots. However, many scenarios fall some-
where in between and require a combination of hero and diffuse
bubbles; a typical example is provided by Stomakhin, Lesser, Wret-
born, et al. [SLW*23, Fig. 16]. A natural solution is to juxtapose
or combine the two methods, leveraging the discretization that is
most performant for the region in question and using spatial heuris-
tics to determine which to use where. Variants of this strategy have
been applied for bubbles (in water) [PAKF13; SWBD20] and spray

† We will use the term “massful” here to represent particles possessing
mass, distinguishing them from the massless marker particles in PIC-like
schemes.

(in air) [LTKF08; LSD*22; SLW*23]. Although the details dif-
fer, all such approaches require a sharp state change in the dis-
crete representation when converting between the diffuse and hero
fluid models. Most commonly, a passively advected marker particle
(used for hero-scale interface tracking) is suddenly reinterpreted as
an active, massful, diffuse particle, with the two regimes weakly
coupled together [LTKF08; SWBD20; LSD*22; SLW*23]; how-
ever, strongly coupled monolithic systems have also been devised
[PAKF13]. A challenge for all state-change models is to perform
the transition without generating visual artifacts, which can easily
happen if physical quantities are not conserved, or if renderable
geometry changes.

Our goal is to develop a single unified discretization for bubble
dynamics that can smoothly simulate, on one end, under-resolved
diffuse bubble flows, and on the other, fully resolved hero bubble
interfacial flows. We will achieve this by using massful Lagrangian
particles as the primary representation for both our hero and dif-
fuse regimes, coupled with an Eulerian grid in a modified Newton
solver. Our high-level technical contributions are:

• A unified mixture model, that uses the same discrete representa-
tion for both hero and diffuse bubble regions.

• An extended Continuum Surface Force (CSF) treatment of sur-
face tension [BKZ92] for both diffuse and hero configurations.

• A stabilized inertia-aware coupling scheme between Eulerian
fluids and Lagrangian particles capable of simulating inviscid
two-phase flows, with implicit integration of nonlinear force
terms.

We achieve our unified representation by rasterizing particle
properties to the grid with the Generalized Interpolation Material
Point (GIMP) approach [BK*04], and we show that, through the
introduction of a simple clamping function φ

c (§5.1), particles can
be considered either as markers or massful depending on their size
relative to the background grid. As a result, no distinction is made
between “hero” or “diffuse” regions, and every simulated particle
is treated identically within the solver. We demonstrate the gen-
erality of our mixture model and time integrator by discretizing
bubbles with two different choices of basis function spaces, the

Figure 2: Bubble-sand mixture. Our model can handle varying
density mixtures, here highlighted with a bubble-sand mixture
pumped into a box of water. Geometric collisions between all parti-
cles and against the wall are resolved using [Dav20], ensuring there
is no interpenetration. ©Wētā FX
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Table 1: Summary of notation used to describe our method. The
discretized location (particle, cell, or face) of the quantities are
provided where possible. Quantities defined for both phases are
marked with a superscript ⋆.

Notation Units Location Meaning
u⋆ m/s q,τ velocity
φ⋆ 1 i,τ fraction
φ̄b 1 τ unclamped bubble fraction
φc 1 τ fractional clamp multiplier
H 1/m2 i fraction Hessian
p N/m2 i mixture pressure
λ 1 pressure multiplier
m kg q mass
r m q radius
V m3 q, i,τ discrete element volume
ρ⋆ kg/m3 q,τ density
f⋆ N/m3 q,τ total force density
∇f⋆ Ns/m4 q,τ total force density Jacobian
fσ N/m3 τ surface tension force density
d⋆ N/m3 q,τ drag force density
D N/m3 q,τ per-particle drag force
κ 1/m i curvature
ψ 1 τ surface tension fraction filter
ν bubble pocket
Oν set of faces in pocket ν

R N pocket residual force
χ N/m3 drift compensation force density
h m grid spacing

rsurfacing
h m smallest surfacing radius for given h

σ N/m surface tension coeffient
µ Ns/m2 dynamic viscosity
g m/s2 gravity
Λ 1 particle interpolation function
ω 1 interpolation weights
N 1 trilinear interpolation function
χε 1 power interpolation function
c m power cell centroid
Ω simulation domain
P set of all particles
C set of all cells
T set of all faces

Tx,Ty,Tz set of faces per component
N i,τ set of neighboring cells/faces
e 1 τ face basis vector

trilinear basis and the power kernels (§5.1.1), and by recreating
both hero and diffuse bubble effects. Since our coupling scheme
combines an Eulerian variable-density Poisson problem and a La-
grangian ODE solver, we show how to implement it using com-
monly available components. Furthermore, our implicit integration
of nonlinear drag forces on bubbles requires no changes to the
pressure solver, in contrast to the method of Wretborn, Flynn, and
Stomakhin [WFS22].

In two-phase flows, a distinction is sometimes made between
miscible fluids (i.e., the mixture is homogeneous) and immiscible
ones (i.e., the mixture is heterogeneous). Under this categorization,
our method addresses (partially) under-resolved immiscible flows
on an Eulerian grid. We will generally refer to this configuration as
a mixture.

2. Related work

Although single-phase free-surface liquids are a common scenario
in graphics, our interest lies in the two-phase flows of immersed
bubble dynamics, which are driven by the density differences be-
tween air and water, together with surface tension effects. The dis-
cussion below emphasizes this setting.

Eulerian methods. Two-phase bubble dynamics are commonly
treated using direct numerical simulation on a Eulerian grid, where
the interface is discretized with either VOF [HN81; BKZ92; Pop09;
KLK20] or level set methods [Kim05; KLL*07; HSKF07]. It is also
possible to enhance Eulerian interface treatments with Lagrangian
data, such as particles [EFFM02], or to combine Eulerian simula-
tion with a Lagrangian interface mesh [TWGT10; BBB10; SZF12;
RLZ*21].

Eulerian methods are flexible and can be used in single- and
multi-phase flows, as well as (im-)miscible fluids. However, we
are not aware of any purely Eulerian mixture theory-based meth-
ods that tackle the immiscible fluid flows we are interested in. A
common shortcoming of Eulerian methods is that the smallest fluid
feature size is limited by the grid resolution, and the computational
cost quickly grows prohibitively large for higher resolutions.

Recently proposed kinetic (lattice Boltzmann) solvers can han-
dle both miscible and immiscible fluids with exact mass and mo-
mentum conservation [LLD*21; LWD24], by leveraging a phase-
field fluid model ([Kim12]) with force-based surface tension. Al-
though outside the scope of our work, it could be interesting to
explore augmenting such schemes with sub-grid bubbles.

Lagrangian methods. Smoothed particle hydrodynamics (SPH)
is the most widely used Lagrangian method in graphics, and both
multiphase flows [MCG03; SP08; RLY*14] and surface tension ef-
fects [IBAT11; AAT13; JWL*23] have been considered. One ben-
efit of Lagrangian methods in the single-phase case is the ability
to focus the computation on a region of interest, by only specify-
ing particles for that region. However, specifying dynamic sparse
simulation domains for two-phase flows, as in Fig. 8, is generally
difficult due to the open free boundary, and we are not aware of
such an SPH scheme.

Other purely Lagrangian discretizations include mesh-based
boundary element schemes [DBWG15; DHB*16], tetrahe-
dra [WTGT09; MBE*10; MEB*14], and power diagrams
[dGWH*15]; however, immersed bubbles have not seen much in-
vestigation within these frameworks.

Hybrid methods. Marker-based FLIP/APIC-style methods are
the standard for liquid simulations in graphics [Hou; Man; Bif;
LSD*22; SLW*23]. Traditionally, they are used in single-phase
scenarios, where the water surface is implied by the union of the
spheres instanced at each marker particle [ZB05] (although a va-
riety of surfacing techniques are used for final rendering). Boyd
and Bridson [BB12] extended the method to two phases, where
markers were added to the air phase. However, this approach intro-
duces two descriptions of the interface that must be resolved. Stom-
akhin, Wretborn, Blom, and Daviet [SWBD20] circumvented this
issue by only using particles to track the air phase, leaving the wa-
ter as purely Eulerian; subsequent authors followed suit [SLW*23;
FSWW24].

© 2025 The Author(s).
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Figure 3: Barrel timelapse. An upside down air-filled barrel is overturned to release bubbles. The hydrostatic boundary condition on the
simulation domain boundary (§5.5) keeps the air in the container under gravity until a critical angle is reached and the air spills out. ©Wētā FX

Existing hybrid massful methods tend to assume a two-phase
mixture, where massful particles are immersed in an otherwise Eu-
lerian fluid. These methods employ either VOF schemes, by raster-
izing volumetric fractions [AO96; KSK10; WFS22], or the mate-
rial point method (MPM), with the fluid(-like) material treated as
weakly compressible [DB17; TGK*17]. Our proposed method fits
into the VOF category.

Multiple discretizations. We have already mentioned several
methods that combine multiple discretizations into a single solver
[PAKF13; LTKF08; SWBD20; LSD*22]. Ren, Jiang, Li, and
Lin [RJLL15] combine a VOF simulator with a post-process
particle-based bubbles simulation. Outside of the bubbles context,
another example of such a combination is the work of Fei, Batty,
Grinspun, and Zheng [FBGZ18], who combine a 2D reduced flow
model for wet cloth with a 3D particle representation for drips.

3. Model

We model submerged bubbles as an incompressible two-phase mix-
ture of air and water. We define φ

b : Ω→ [0,1] as the (unitless)
fractional amount, or simply fraction, of air at any point in the sim-
ulation domain Ω⊆R3, and the complement φ

w(x) = 1−φ
b(x) as

the fractional amount of water. For equations of motion we use the
two-fluid mixture model [WFS22]

φ
bρb Dbub

Dt
= φ

bρbg+db−φ
b∇p, (1)

φ
wρw Dwuw

Dt
= φ

wρwg+dw−φ
w∇p, (2)

0 =∇· (φbub +φ
wuw), (3)

for velocity u, density ρ, pressure p, drag force density d, external
accelerations g (e.g. gravity), and material derivative operator D

Dt
for the respective phase. Superscripts b or w indicate that a quan-
tity is defined for the air (bubble) or water phase, respectively. In
particular, the superscript on the material derivative indicates the
velocity field through which the quantity is advected, e.g., Dw

Dt im-

plies the operator ∂

∂t +uw ·∇. To ensure momentum conservation
of the drag force, we set dw = −db. In addition to Eqs. 1-3 there
are also conservation laws for densities and fractional amounts, dis-
cussed in the App. A, which will be automatically ensured by our
discretization of bubbles as massful particles (§5).

Equations 1-2 couple the two phases via drag forces and a gen-
eralized buoyancy term [WFS22; DB17]. The dynamics in our case
will be primarily driven by the density difference of the two fluids,
along with surface tension which we discuss in §3.1. We will treat
the pressure term with a projection strategy similar to that of a stan-
dard single-phase pressure projection (§5.5). The drag force db is
defined in §5.2 once the discretization has been presented.

A key feature of diffuse bubble methods is that they track the
fluid mixture using one or more continuous indicator variables,
whereas interfacial flow models all rely on tracking a sharp inter-
face (by e.g., level set, reconstruction from particles, etc.). Never-
theless, they are closely related. Consider an interfacial liquid with
φ

b ∈ {0,1} (i.e., a strict indicator function) on the entire domain,
and for the moment set the drag force db = dw = 0. Assuming ap-
propriate boundary conditions, the only difference between Eqs. 1-
3 and interfacial flow models is that the latter typically includes
a surface tension force. Therefore, to pursue our goal of unifying
these distinct settings, we next propose a consistent surface tension
model that can be applied to continuous fluid mixtures.

3.1. A continuum surface tension model for bubble dynamics
across scales

Surface tension acts to minimize the area of the surface between
two fluids, and can be modeled as a pressure jump [p] across the
interface proportional to mean curvature κ(x) with coefficient σ.
Since such a jump is mathematically modelled as a singular source
term (i.e., Dirac delta) supported only on the interface, Brackbill,
Kothe, and Zemach [BKZ92] proposed a smoothed approximation
where the pressure jump across a small element A of the interface
is replaced by a volumetric force density field fσ acting on a region

© 2025 The Author(s).
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V (A) around that element∫
A
[p]ndS =

∫
A

σκndS≈
∫

V (A)
fσdV.

This approach allowed them to simulate surface tension effects
while sidestepping the numerical challenges of sharp discontinu-
ities. From a binary indicator variable φ̃ : Ω→{0,1}, where φ̃ = 0
in one phase and φ̃= 1 in the other, they apply convolution to create
a smoothed variable φ : Ω→ [0,1], from which they in turn define
the volumetric surface tension force density

fσ = σκ(x)∇φ(x) ∀x ∈Ω. (4)

Because φ is constructed as a smoothed version of φ̃, it implicitly
describes an interface located at the φ = 0.5 isosurface. Thus, while
Eq. 4 is continuous in formulation, the manner in which Brackbill,
Kothe, and Zemach [BKZ92] employed it falls squarely in the in-
terfacial flow category. We will next adapt this model to our diffuse
mixture setting.

We take as our fundamental fluid description a collection of
small dispersed bubbles, each of which is assumed to be in equi-
librium with respect to local surface tension forces (and thus is
spherical). These bubbles, represented as particles, will be used to
determine our bubble fractions φ

b; for details see §5.1, but for the
proceeding discussion it is enough to know that φ

b is a fractional
field that has a higher value where there is more bubble volume
present. A pure air phase corresponds to φ

b = 1.

Multiple bubbles near each other would collect and form new in-
terface shapes, but these are generally too complex and too numer-
ous for us to compute individually. Instead, we assume the presence
of an interface wherever there is a nonzero volume fraction gradient
∇φ

b(x) and compute the force density

fσ = σκ(x)∇φ
b(x), κ(x) =∇·

(
∇φ

b(x)
||∇φb(x)||

)
. (5)

Equation 5 is, in form, identical to the formulation of Brack-
bill, Kothe, and Zemach [BKZ92] but with an important distinc-
tion: φ

b does not track an explicit interface. For Brackbill, Kothe,
and Zemach [BKZ92], φ is a smooth field constructed from some
sharp interface representation, whereas for us φ

b is a volume frac-
tion representation of dispersed bubbles immersed in a liquid. As a
result, the set of possible functions {φb} is a superset of {φ}. Then,
fσ in Eq. 5 acts on the bubble-water mixture rather than the two
phases separately, and since

fσ = (φb +φ
w)fσ = φ

bfσ +φ
wfσ, (6)

a natural choice is to apply the fraction-scaled surface tension force
density to each phase.

We finally arrive at our equations of motion by combining
Eqs. 1-2 with Eq. 5, resulting in

φ
bρb Dbub

Dt
= φ

bρbg+db−φ
b∇p+φ

bfσ, (7)

φ
wρw Dwuw

Dt
= φ

wρwg+dw−φ
w∇p+φ

wfσ, (8)

0 =∇· (φbub +φ
wuw). (9)

[BB12] Ours
Trilinear

Ours
Power

Figure 4: Surface tension methods. We compare our surface ten-
sion model to Boyd and Bridson [BB12]. An initial cube seeded
with regular particles oscillates to become an octahedron under sur-
face tension. Particles are colored according to their speed, where
lighter hues of blue indicate faster speeds. ©Wētā FX

Equations 7-9 are a continuous two-phase mixture model with sur-
face tension, but without an explicit surface representation. In the
case of a sharp interface φ

b ≡ φ our surface tension model is iden-
tical to that of Brackbill, Kothe, and Zemach [BKZ92].

We can show from the equations of motion that Eq. 6 is the only
sensible way to split the surface tension force contribution between
phases, as it guarantees the possibility of a static volumetric equi-
librium. Indeed, setting uw = ub = g = db = 0 in Eqs. 7-9 yields

0 =−φ
b∇p+φ

bfσ,

0 =−φ
w∇p+φ

wfσ,

where both can be satisfied when∇p = fσ.

We finally point out that our method is not too dissimilar
from existing SPH surface tension models that use color fields
(e.g. [MCG03]).

4. Temporal discretization

We will solve the equations of motion using operator splitting and
a modified Newton-Raphson loop that separates the position and
velocity updates. For the proceeding section, we will use ⋆∈ {b,w}
to refer to the two fluids at the same time. We first update velocities
according to the fluid forces

φ
⋆ρ⋆

∂u⋆

∂t
= φ

⋆ρ⋆g+d⋆−φ
⋆∇p+φ

⋆fσ, (10)

subject to Eq. 9 and then separately solve the advection equation
for each of the two phases,

D⋆u⋆

Dt
= 0.

Below, we consider the first set of equations and defer discussion
of advection to §5.6 after our spatial discretization has been intro-
duced.

4.1. Full Newton method

Let n = 0,1, . . . denote the iteration index and consider a forward
simulation time step ∆t. We use a subscript n to represent a quantity
at that Newton iteration, and use n = 0 to indicate the input values
before the first Newton iteration.

© 2025 The Author(s).
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5

Bubbles

Grid

5 Newton iteration n

Solve for velocity 
ub

n+1CAdvect bubbles xp, ub1 Calculate drag force db
n, ∂ubdb

nA Calculate total force fb
n, ∂ubfb

nB

Rasterize fractions  
and density ϕb, ρb2 Rasterize drag force and gradient Db

n, ∂ubDb
nE Rasterize ūbDfσ

Pressure

projection

pn+1, uw

n+1

H

Advect water  uw1

Reset pressure3

Calculate surface tension 
force  fσ4

Integrate velocity    ūwGCalculate total force fw
n , ∂uwfw

nF

∇pnuw
n

Figure 5: Algorithm outline. We provide a visual description of the steps in Alg. 1. Green boxes correspond to operations performed on the
particles, blue on the grid, and orange require either interpolation or rasterization. Arrows indicate the flow of data. ©Wētā FX

Discretizing Eq. 10 in time yields

φ
⋆ρ⋆
(

u⋆−u⋆
0

∆t

)
= φ

⋆ρ⋆g+d⋆−φ
⋆∇p+φ

⋆fσ.

We freeze attributes related to positions, holding φ and ρ constant
for all iterations. We seek the roots f⋆ = 0 of the per-phase force
density

f⋆(ub,uw,λ) = φ
⋆ρ⋆g+d⋆−λφ

⋆∇p+φ
⋆fσ +φ

⋆ρ⋆
(

u⋆
0−u⋆

∆t

)
,

(11)
subject to Eq. 9. The argument λ ∈ {0,1} has been introduced to
allow for the removal of the pressure gradient term (λ = 0), which
will be convenient for the modified Newton solve we describe later.
Unless stated otherwise, however, we assume λ = 1. The corre-
sponding Jacobian∇f⋆ : (ub,uw)→ R6×3 has components

∂uξ f⋆ = ∂uξ d⋆−δ
(ξ,⋆) φ

⋆ρ⋆

∆t
I, ξ ∈ [w,b] (12)

where we use the shorthand ∂u ≡ ∂/∂u, the Dirac delta function
δ
(,), and I as the 3×3 identity matrix. Since position-related quan-

tities are frozen, and surface tension and pressure are only indi-
rectly affected by velocity changes, they do not contribute to the
Jacobians.

From the above, we can assemble a Newton iteration as

−
(

∂ub fb
∂uw fb

∂ub fw
∂uw fw

)(
ub

n+1−ub
n

uw
n+1−uw

n

)
=

(
fb

fw

)
, (13)

∇· (φbub
n+1 +φ

wuw
n+1) = 0. (14)

4.2. Modified Newton solver

Instead of solving Eqs. 13-14 directly, we leverage a type of inertia-
aware coupling scheme, introduced by Wretborn, Flynn, and Stom-
akhin [WFS22]. We will first review their method using our nota-
tion.

Inertia-aware, [WFS22]. Wretborn, Flynn, and Stom-
akhin [WFS22] propose finding new velocities ub

n+1 and
uw

n+1, by employing operator splitting. By setting cross-derivative

terms to zero ∂uw fb = ∂ub fw = 0, each phase can be solved for
independently in Eq. 13. They perform the following steps:

1. Solve implicitly for ub
n+1, using pressure pn from the last New-

ton iteration:

−∂ub fb(ub
n,u

w
n )
(

ub
n+1−ub

n

)
= fb

n(u
b
n,u

w
n ,λ≡ 1). (15)

2. Compute pre-pressure bubble velocity ūb by canceling the (ex-
plicit) pressure force contribution added by Eq. 15:

ūb = ub
n+1 +

∆t
ρw∇pn. (16)

3. Solve explicitly for pre-pressure water velocity ūw:

ūw = uw
n +

∆t
φwρw fw(ub

n,u
w
n ,λ≡ 0). (17)

At this point ūb and ūw have had all forces integrated except for
pressure.

4. Solve implicitly for mixture pressure pn+1, water velocity uw
n+1,

and bubble velocity ûb:

φ
bρb

∆t

(
ûb− ūb

)
=−φ

b∇pn+1, (18)

−∂uw fw(ub
n,u

w
n )
(
uw

n+1− ūw)=−φ
w∇pn+1, (19)

0 =∇· (φbûb +φ
wuw

n+1). (20)

Notably, this method discards the velocity ûb, retaining ub
n+1

instead, and applies the pressure pn+1 to the bubble phase in the
next Newton iteration via Eq. 15 in step (1).

Wretborn, Flynn, and Stomakhin [WFS22] observed that removing
Eq. 18 and using ub

n+1 for bubble velocities treats bubbles as in-
finitely heavy and causes instabilities. They coined the term inertia-
unaware to describe this variation.

The inclusion of the drag force gradient on the left-hand side in
Eq. 19 effectively modifies the density of the water in the pressure
solve. As a result, we found that achieving a hydrostatic equilib-
rium for two equal-density fluids and a nonlinear drag force is not
possible for the inertia-aware model in the form proposed by Wret-
born, Flynn, and Stomakhin [WFS22].

© 2025 The Author(s).
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Stabilized inertia-aware. To address this issue we integrate water
velocities implicitly in step (3) rather than in the pressure solve of
Eq. 19. Consider the following steps:

1. Solve implicitly for ub
n+1 (same as inertia-aware, [WFS22]):

−∂ub fb(ub
n,u

w
n )
(

ub
n+1−ub

n

)
= fb

n(u
b
n,u

w
n ,λ≡ 1). (21)

2. Compute pre-pressure bubble velocity ūb (same as inertia-
aware, [WFS22]):

ūb = ub
n+1 +

∆t
ρw∇pn. (22)

3. Solve implicitly for pre-pressure water velocity ūw:

−∂uw fw(ub
n,u

w
n )
(
ūw−uw

n
)
= fw(ub

n,u
w
n ,λ≡ 0). (23)

4. Solve implicitly for mixture pressure pn+1 and velocities uw
n+1,

ûb:

φ
bρb

∆t

(
ûb− ūb

)
=−φ

b∇pn+1, (24)

φ
wρw

∆t
(
uw

n+1− ūw)=−φ
w∇pn+1, (25)

0 =∇· (φbûb +φ
wuw

n+1). (26)

As will be seen in the next section, fw,∂uw fw, and uw are all stored
at the same (face) locations on the staggered grid and the update
in Eq. 23 can be done for each face independently. By contrast,
the method of Wretborn, Flynn, and Stomakhin [WFS22] requires
∂uw fw to be computed on cell centers (Eq. 19), thereby blurring it.

One major benefit of both inertia-aware schemes is that they
avoid the costly fully monolithic solvers favored by prior work
[PAKF13; FBGZ18], and integrating them into existing solvers re-
quires little effort. To solve Eq. 21 we use an industry standard
FEM solver [LSD*22], which has the added benefit of allowing
us to use the same coupling scheme for thin or permeable elastic
materials such as hair and cloth (see [SWBD20; ZSI*23]). Solving
Eqs 24-26 requires only a few adjustments of a single-phase incom-
pressible pressure solver. We will elaborate on these solvers in §5.2
and §5.5.

All our examples use the stabilized inertia-aware coupling
scheme. We provide a convergence plot in Fig. 6 showing that the
two inertia-aware integration schemes provide the same character-
istic behavior, although empirically we have observed improved
stability using our technique.

5. Spatial discretization

Our mixture model leverages quantities stored both on particles
and on a staggered regular grid, with the latter allocated sparsely
around particles in so-called tiles [LSD*22]. Each tile consists of a
user-defined number of voxels, typically 43− 83. We use the term
“padding” to refer to the number of whole tiles between any parti-
cle and the ambient (not tiled) space. See Fig. 12 for an illustration
of 43 voxels per tile with a padding of zero.

Notation. We will use i ≡ (i, j,k) ∈ C for C ⊂ Z3 to index the
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Figure 6: Convergence plot. A single moving bubble is submerged
in still water, and the total (solid), particle (point-dashed), and fluid
(dashed) momenta are plotted for every Newton iteration under dif-
ferent coupling schemes. ©Wētā FX

set of active cells‡ of a uniform grid with spacing h, where the
cell i is located at xi = hi. Faces are located at a 1

2 -index offset
in each direction, and we define Tx = {(i− 1

2 , j,k) | (i, j,k) ∈ C}
and so on for Ty and Tz. Often it is convenient to refer to all faces
collectively, for which we define T = Tx∪Ty∪Tz. With each face
τ∈ T we associate a surrounding cubic control volume Vτ = h3 and
Euclidean basis vector eτ corresponding to the face normal. We
define the neighbor sets Ni,Nτ to indicate the six faces touching
cell i and the two cells touching face τ, respectively. For particles,
we let q ∈ P be a running index with P ⊂ N.

For the rest of this section we let a subscript denote a (spa-
tial) discretization location. If not otherwise stated, q, i, and τ will
denote a particle, a cell, and a face, respectively. Note that some
quantities, such as ub, are discretized both on particles and on the
grid. For reference, Table 1 lists important quantities and their dis-
cretized locations when possible.

5.1. Material particles and a background grid representation

We treat bubbles as massful particles with density ρb
q, volume Vq,

and velocity ub
q. With each particle we associate an interpolation

function Λq : Ω→ R+ such that∫
Ω

Λq(x)dx =Vq. (27)

Then, we follow the GIMP framework [BK*04; GTJS17] and de-
fine the interpolation weights

ωqα =
1

Vq

∫
Ω

Λq(x)Nα(x)dx, α ∈ {C ∪T }, (28)

‡ We will use the terms “cell” and “face” for locations within a voxel, the
former being at the center of the voxel and the latter at the centers of the
walls of the voxel.

© 2025 The Author(s).
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Figure 7: Bubble sizes. We compare the resulting bubble shapes from initially still air, with constant surface tension σ = 0.0072 N/m and
voxel size h = 0.125 cm. Small bubbles (left) collect into axisymmetric shapes and rise in straight paths. As bubbles increase in size (middle)
they become asymmetric and start to break up, rising in characteristically “wobbly” paths. For large bubbles (right) the bubble motion and
break-up becomes chaotic. Particles are sampled every h/2 within a sphere of radius 3 mm to 23 mm in 1 mm increments. Particles are drawn
with 4rq for better visibility. ©Wētā FX

where

Nα(x) = N (∆xα · ex,h)N (∆xα · ey,h)N (∆xα · ez,h) ,

with the standard linear “hat” function N(x,h) = max(1− |x|
h ,0),

∆xα = x− xα, and α the discrete element in question. The func-
tions Λq must be defined such that the weights interpolate linear
functions exactly:

xq = ∑
i∈C

ωqixi = ∑
τ∈Tξ

ωqτxτ, ∀ξ ∈ {x,y,z}, ∀q ∈ P. (29)

The interpolation functions will be used to transfer particle values
to and from the grid, for which we define the following rasterization
and interpolation procedures.

Rasterization. In order to construct discrete volume fractions on
the grid we start by defining an unmodified bubble fraction φ̄

b as
the weighted and normalized bubble volume rasterized to faces T :

φ̄
b
τ =

1
Vτ

∑
q∈P

Vqωqτ. (30)

Since φ̄
b
τ is a variable on faces, the rasterization above contains

three rasterization procedures, one per staggered grid component.
Notably, although φ̄

b
τ is stored on faces it is a scalar field.

Under our modeling assumption of an incompressible mixture a
fractional value φ̄

b
τ > 1 is unacceptable. To avoid this situation we

introduce a fraction clamp factor φ
c
τ = 1/φ̄

b
τ if φ̄

b
τ > 1 (otherwise

letting φ
c
τ = 1), and define the clamped bubble fraction as

φ
b
τ = φ

c
τφ̄

b
τ . (31)

The discrete water fraction is the complement φ
w
τ = 1−φ

b
τ .

We define the bubble density ρb
τ for a face as its rasterized bubble

mass divided by its “effective” bubble volume φ̄
b
τVτ (i.e., without

clamping) rasterized to T as

ρb
τ =

1
φ̄b

τVτ
∑

q∈P
ρb

qVqωqτ. (32)

For φ̄
b
τ > 1, a condition commonly encountered due to numerical

integration errors or choice of initial conditions, we have found the
treatment above to be a reasonable compromise between mild vi-
olations of mass conservation and unnatural sinking of artificially
compressed bubble regions. Note that this choice means that for
a constant bubble density the rasterized density will also have the
same constant value.

We compute the bubble velocity on T in a momentum-
conserving fashion by rasterizing momentum and dividing off bub-
ble mass

ub
τ =

∑q∈P ρb
qVq(ub

q · eτ)ωqτ

∑q∈P ρb
qVqωqτ

. (33)

Interpolation. We interpolate quantities from T to P using

Qq = ∑
τ∈T

Qτeτωqτ. (34)

5.1.1. Choice of basis functions

We have tested our method using both trilinear basis functions and
the power kernel of Qu, Li, De Goes, and Jiang [QLDJ22].

Trilinear. Set Λq(x) =Vqδ(x−xq). This choice of the basis func-
tion recovers the trilinear weights from the diffuse bubble method
outlined by Wretborn, Flynn, and Stomakhin [WFS22].

Power. Following Qu, Li, De Goes, and Jiang [QLDJ22], we can
use the power kernel given by

χ
ε
q(x) =

sqe−||xq−x||2/ε

∑b∈P sbe−||xq−xb||2/ε

for regularized scaling variables sq and a user defined regularization
parameter ε. We compute sq exactly as described by Qu, Li, De
Goes, and Jiang [QLDJ22], and then let Λq(x) = χ

ε
q(x). We used

the following settings related to power diagram generation for all
of our examples: the s-grid resolution was defined as the Eulerian

© 2025 The Author(s).
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Figure 8: Exhale. A person under water exhales in bursts, resulting
in characteristic bubble shapes. At the right is a diagnostic view
with a slice of the sparse volumetric tiles together with underlying
particles, the latter being artificially drawn with radius 2rq for better
visibility. ©Wētā FX

grid resolution h, t-grid resolution h/2, regularization amount ε =
(h/3)2, and kernel cut-off 3h/2.

The set of all functions {χε
q(x)}p∈P forms a regularized power

diagram with particles as sites. Each power cell represents the same
volume as that of the corresponding particle. This fact ensures that
the unclamped fraction in Eq. 30 will be in the range φ̄

b
τ ∈ [0,1].

Therefore, under the power kernel, there is no need for fraction
clamping and we can simply set φ

b
τ = φ̄

b
τ . Additionally, the resulting

weights in Eq. 28 are not interpolants, but rather return the centroid
cq = ∑τ∈T ωqτxτ. Thus, after computing χ

ε
q we move particle posi-

tions to the centroids xq← cq, in accordance with the centroid ad-
vection scheme proposed by Qu, Li, De Goes, and Jiang [QLDJ22].

5.2. Bubbles equations of motion

Equipped with the spatial interpolation functions in the previous
section, we can now discretize Eq. 21. Dividing Eqs. 11 by φ

b and
taking density, velocity, and the drag force constant over the bubble,
the total exerted force per unit of bubble volume fb

q≡ (fb/φ
b)|xq and

its gradient ∂ub fb
q ≡ (∂ub fb/φ

b)|xq acting on each particle are given
by

fb
q = ρb

qg+db
q−∇p(xq)+ fσ(xq)+ρb

q

(
ub

0,q−ub
q

∆t

)
,

∂ub fb
q = ∂ub db

q−
ρb

q

∆t
I,

(35)

where ub
0,q represents the particle velocity at the beginning of the

Newton iteration and db
q will be defined in Eq. 37. To compute the

total force per particle one must multiply fb
q with the particle vol-

ume. Quantities with function signatures (i.e.,∇p, fσ in Eq. 35, and
φ

w,uw in Eqs. 36-37) need to be interpolated, which can be done
using Eq. 34, except for the surface tension force which is outlined
in §5.4.

We will leverage the same discrete per-particle drag force as
Wretborn, Flynn, and Stomakhin [WFS22, Eq. 5]. They define

Dq(∆u) =
µrqπ

Vq

(
6+

ρwrq||∆u||
2µ

)
∆u (36)

for the local relative velocity ∆u = uw(xq)− ub
q. Since no drag

forces on bubbles can arise in either pure air (φw = 0) or pure water
(φb = 0) regions, we additionally scale the expression in Eq. 36 by
(the unitless) water fraction, setting

db
q ≡

(
db

φb

)∣∣∣∣∣
xq

= φ
w(xq)Dq. (37)

When interpolating φ
w(xq) using Eq. 34 the result is a vector

(i.e., per-dimension water fractions), and when performing Eq. 37
discretely the multiplication should be interpreted as component-
wise. The expression for the drag gradient is found using the chain
rule as ∂ub db

q ≡ (∂ub db/φ
b)|q = φ

w(xq)∂ub Dq and

∂ub Dq =−
µrqπ

Vq

(
6+

ρwrq||∆u||
2µ

)
I−

(
πρwr2

q

2Vq

)
∆u⊗∆u
||∆u|| (38)

where ⊗ : (R3,R3)→ R3×3 denotes the outer product.

5.3. Drag force rasterization

The preceding section established that the drag force on a particle
q is db

qVq = φ
w(xq)DqVq. The φ

w multiplier avoids the singularity
for purely bubble regions: there should not be any drag if there is
no water present. However, when transferring the drag force from
particle q to the grid T we can still encounter a scenario where
a component of φ

w(xq) > 0, but one of the affected faces τ has
φ

w
qτ = 0. Naive weighted rasterization in this case could cause a

nonzero rasterized force to be applied to a face with no water, which
is clearly undesirable. Hence we propose an alternative method: we
first rasterize Dq as

Dτ =
1

Vτ
∑
q
(Dq · eτ)Vqωqτ (39)

and afterwards multiply the result on the grid by φ
w
τ . Equation 39

guarantees that the total force received by the grid matches that on
the particle; a proof is available in App. B. The effect is that we have
modified the rasterization weights to avoid a potential singularity.
The water drag force density contribution needed in Eq. 11 is then
computed as dw

τ =−φ
w
τ Dτ.

We will treat the drag gradient in a similar manner, with the ex-
ception that we rasterize it lumped along rows as

∂ub Dτ,αα =

1
Vτ

∑
q∈P

3

∑
β=1
|∂ub Dq,αβVq|(eτ · eβ)ωqτ, α ∈ [1,2,3],

(40)

© 2025 The Author(s).
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Figure 9: Surface tension. We study the effect of changing the surface tension coefficient. The leftmost simulation uses σ = 0, and each
subsequent simulation increments the surface tension coefficient by 0.001 N/m. Particles are drawn with radius 2rq for better visibility.
©Wētā FX

where α and β in Eq. 40 should be viewed as matrix indices, and we
have slightly abused our notation to let eβ be the standard Euclidean
basis vectors (e1 for x, e2 for y, etc). Then, the drag force density
gradient on the grid is ∂uw dw

τ = φ
w
τ ∂uw Dτ =−φ

w
τ ∂ub Dτ.

This scheme ensures that ∂uw dw
τ is a strictly negative diagonal

matrix, so we can treat it as a vector, storing a single scalar value
per face τ. The physical interpretation of Eq. 40 can be understood
by considering Eq. 23. Since every component in−∂uw dw

τ is greater
than zero, this results in a larger ∂uw fw

τ (Eq. 12), and will cause a
more conservative prediction of the water velocity ūw

τ . This results
in fewer oscillations from drag forces—which are stiff due to the
nonlinear formulation—and a more stable system overall.

Fei, Batty, Grinspun, and Zheng [FBGZ18, §4.2.1] similarly pro-
pose to lump the drag force gradient, but do so for both phases and
without taking the absolute value of the terms in Eq. 40. Empiri-
cally, we did not see large differences between the two implemen-
tations, but our version has the added benefit of avoiding a potential
null mode when ∂uw dw = φ

wρw

∆t I.

5.4. Surface tension force

When discretizing Eq. 5 we have the choice to leverage the φ
b
τ de-

fined on the grid or compute the force from the particle geometry
directly. The latter option would result in a formulation similar to
SPH surface tension models that use a color field (e.g. [MCG03]).
We adopt the former option, since surface tension and pressure
forces are intimately linked and we leverage the grid to compute
the pressure.

The fractions φ
b
τ are placed irregularly in space since they are

stored on faces. To compute curvature we need first- and second-
order derivatives defined at the same location; and to avoid a costly
re-rasterization of particle volume to cell centers, we average the

fractions to the cell centers by

φ
b
i = ∑

τ∈Ni

ψτφ
b
τ

6
, (41)

where ψτ ∈ {0,1} is a filter defined per face, which we will use to
remove single-particle regions on the grid, andNi is the set of faces
belonging to cell i. The filter is fully defined later in §5.4.1.

We then use the standard cell-centered central finite difference
stencil and define the averaged fraction gradient∇φ

b
i and the corre-

sponding Hessian Hi. The mean curvature follows from expanding
the expression in Eq. 5 using the chain rule as

κi =
1

||∇φb
i ||

(
trace(Hi)−

(∇φ
b
i )

T Hi ∇φ
b
i

||∇φb
i ||2

)
.

Finally we compute the surface tension force density per face τ =
(i− 1

2 , j,k)∈Tx leveraging the neighboring cell values of curvature
and bubble fraction as

f σ
τ = σ

(
κ(i, j,k)+κ(i−1, j,k)

2

)(
φ

b
(i, j,k)−φ

b
(i−1, j,k)

h

)
, (42)

and similarly for the other dimensions. The per-phase surface ten-
sion force densities can now be computed as φ

b
τ f σ

τ and φ
w
τ f σ

τ .

Equation 42 relies on two operations that have a smoothing ef-
fect. The first is the construction of the cell-centered fraction φ

b
i in

Eq. 41, and the second is the averaging of the cell-centered cur-
vature κi directly to faces in Eq. 42. We explored avoiding this
by computing curvature directly on the faces, and did so by defin-
ing finite difference stencils centered at each face, but we observed
no benefits from this approach. The resulting curvature was noisy,
leading to spurious movement of some particles and requiring ad-
ditional filtering to be practical. As a result, we abandoned this ap-
proach.

© 2025 The Author(s).
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5.4.1. Numerical considerations

Surface tension as a phenomenon is momentum conserving when
considering any connected bubble region. However, given our ex-
plicit discretization of surface tension as a force, small errors in-
evitably arise when integrating the force numerically. We propose
two practical solutions: a bubble fraction filtering algorithm, which
removes the grid footprint of isolated single-cell regions, and a drift
compensation strategy.

Fraction filtering. We have found that a single particle, or many
particles confined to an isolated voxel, can cause spurious errors
when numerically integrating the surface tension force. These er-
rors manifest as rising bubbles getting stuck or moving erratically,
as a result of the diffuse bubble representation on the grid being
under-resolved. We propose to solve it using the following filtering
algorithm.

To make our notation concise, let a,b,c ∈ C be indices rep-
resenting cells. We will overload the notation somewhat and let
τ(a,b) ∈ T represent the face neighboring both cells a and b. Then
we define ψτ using the following procedure:

1. Mark cells. If a cell a has φ
b
τ > 0 for all neighboring faces τ ∈

Na mark it with a unique identifier ida ∈N. Otherwise set ida =
−1.

2. Unmark connected cells. If two marked cells a,b share a face,
set ida = idb =−1.

3. Dilate. If an unmarked cell a neighbors only one marked cell b,
and there are at at least 2 neighboring faces τ ∈Na with φτ > 0;
set ida = idb.

4. Dilate. If an unmarked cell a neighbors two marked cells b,c
such that φ

b
τ(a,b) > 0 and φ

b
τ(a,c) > 0, and idb = idc; then set

ida = idb.
5. Filter. For every face τ(a,b): if a or b is marked, set ψτ = 0;

otherwise ψτ = 1.

The proposed algorithm was developed by inspecting the footprint
of a single particle when rasterized to the grid. It finds any isolated
voxel that contains particles, and then performs a topological di-
lation on the grid. A schematic image of the filtering algorithm is
presented in Figure 11. Since the dilation operations extend inde-
pendently in each dimension, two dilation operations are enough to
touch all rasterized faces for a single particle even in three dimen-
sions.

Drift compensation. Let Oν ⊂ T be the largest possible set of
faces such that they all have nonzero bubble fraction φ

b
τ > 0,∀τ ∈

Oν and any two faces inOν can be traversed via cells that neighbor
Oν. That is, two faces τ1,τm ∈ T are connected if there exists a
path of cells (i1, . . . , im) ∈ C such that the shared face φ

b
τ(iα,iα+1)

>

0 ∀α∈ [1,m−1] and τ1 ∈Ni1 ,τm ∈Nim . The setOν can be created
by a standard flood-fill algorithm where faces with nonzero bubble
fraction are nodes and cells are edges. We call ν a “pocket”, and
only consider pockets with more than one face, |Oν|> 1.

For the surface tension force to be momentum conserving we
require that it integrates to zero for all pockets ν. Discretely, this
condition may not be satisfied, and there might be some nonzero
force residual Rν per pocket

Rν = ∑
τ∈Oν

f σ
τ Vτ. (43)

By introducing the force density

χν =
Rν

∑τ∈Oν
Vτ

(44)

we can guarantee that the discrete shifted surface tension force in-
tegral is zero, since

∑
τ∈Oν

Vτ

(
f σ
τ −χν

)
= Rν−Rν = 0 (45)

for any pocket ν. The resulting particle corrected surface tension
force per unit of bubble volume takes the form

fσ(xq) = ∑
τ∈T

φ
c
τ( f σ

τ − ∑
ν|τ∈Oν

χν)ωqτ, (46)

where we note that every particle necessarily will only rasterize to
a single pocket; thus the set {ν | τ ∈Oν} will always contain a sin-
gle entry when ωqτ > 0. Note also that the interpolation in Eq. 46
is clamped, as otherwise the total surface tension force computed
on the particles would be overestimated. We show in App. C that
applying Eq. 44 ensures momentum conservation even when inte-
grating over the different discrete representations.

5.5. Pore-pressure projection

The discrete systems of equations in Eqs. 24-26 can be solved by
slightly modifying a standard staggered pressure projection solver.

t [s]

0

1
4

1
2

1

stuck particles

Full method No filtering Skip Eq. 51

Figure 10: Surface tension ablation. We show the efficacy of our
numerical techniques to improve the integration of surface tension
forces. Each column contains four image snapshots at different
times of the same simulation, taken from a fixed camera. Left: our
method as presented in Alg. 1. Middle: skip the Fraction filtering
by setting ψ = 1 in Eq. 41. The circled in red particles are “stuck”
(have zero velocity), and are part of the t = 1 snapshot. Right: skip
the re-application of surface tension forces in Eq. 51, and instead
rasterize pre-projection bubble velocity ūb (Eq. 22). ©Wētā FX
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(a) Initial condition. (b) Step (1). (c) Step (2). (d) Step (3). (e) Step (4). (f) Visualizing ψτφb
τ .

Figure 11: Filtering illustration. Bubble particles are marked as circles, and the rasterized fractions φ
b
τ are visualized as lines on each grid

face. Each unique identifier is represented by a different color (blue, green, yellow). To highlight the different dilation operations in steps
(3) and (4), each subsequent step receives a lighter hue. The unmarking of cells in step (2) is represented by the striped diagonal pattern.
©Wētā FX

Let P ∈ R|C| be a column-vector of all unknown pressure values
and Uw,Ub ∈ R|T | column-vectors of all velocity values. We will
follow the same notation for the different stages of velocity by
means of (time) subscripts or bar/hat modifiers. For example, Uw

n+1
are the staggered water velocity values at the end of the time step,
and Ūb are the bubble velocity values fed into the pressure pro-
jection algorithm. Furthermore, we let Φ

b,Φw ∈ R|T |×|T | be the
diagonal bubble and water fraction matrices, respectively, and sim-
ilarly for masses B,W ∈ R|T |×|T |. Finally, we use the standard
staggered finite difference discretizations of the gradient G : C →T
and divergence GT : T → C [HW65].

Then, the discrete equivalent of Eqs. 24-26 is

Φ
bB
(

Ûb− Ūb
)
=−∆tΦbGPn+1,

Φ
wW

(
Uw

n+1− Ūw)=−∆tΦwGPn+1,

0 = GT
(

Φ
bÛb +Φ

wUw
n+1

)
.

Substitution of the first two rows into the third and reordering yields

GT
(

Φ
bB−1 +Φ

wW−1
)

GPn+1 = ∆tG
(

Φ
bŪb +Φ

wŪw
)
. (47)

By setting M−1 = Φ
bB−1 +Φ

wW−1 we see that the previous sys-
tem of equations is a standard variable density Poisson problem,
and can be solved efficiently by e.g., a preconditioned CG itera-
tive solver. As a result, extending a standard single-phase pressure
solver to this two-phase pore-pressure method requires little work:
one must include degrees of freedom for both the air and water
phases, rather than water alone, and modify the mass and diver-
gence computations according to Eq. 47.

The final water velocity is given by

Uw
n+1 = Ūw−∆tW−1GPn+1 (48)

which yields the individual face values uw
n+1,τ. We reiterate that

in the inertia-aware schemes the intermediate particle velocities Ûb

are discarded after the solve, and we can simply ignore the pressure
gradient subtraction for the bubble phase.

Hydrostatic boundary condition. We follow Stomakhin, Wret-
born, Blom, and Daviet [SWBD20] and use Dirichlet hydrostatic
pressure boundary conditions around the exterior borders of the

sparsely allocated volumetric tiles. For any cell i ∈ C that neigh-
bors a non-allocated cell we set

pi = ρw(g ·xi). (49)

To ensure that the mixture density is exactly ρw by the boundary we
allocate sufficient tiles such that no particle would rasterize outside
of a tile or to a cell on the border of an existing tile. For example, the
padding in Fig. 12 is zero which is generally too small; we typically
use a padding of 1-4 tiles. As the padding becomes larger the sim-
ulation becomes slower, but our choice of a hydrostatic boundary
condition becomes more correct. Empirically, we have found that
the hydrostatic pressure condition allows us to use fewer tiles than

Bubble particle

Sparse tile

p∂Ω = ρw(g ·x)

Figure 12: Sparse layout. Sparse volumetric tiles are created
around particles such that no particle rasterizes to faces outside
of the simulation region. The arrows around the boundary repre-
sent the (scalar) hydrostatic pressure boundary condition Eq. 49.
©Wētā FX
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a zero velocity boundary condition. Since the pressure boundary
condition allows for velocity flux across the boundary, the buoy-
ancy effects are less inhibited. The result is that bubbles appear to
rise more energetically.

We have additionally found that using the hydrostatic pressure
condition as the initial guess for pressure improves the stability of
the solve. That is, we set the pressure value p0,i at the beginning of
each Newton solve for each cell i ∈ C using Eq. 49.

Discrete equilibrium between surface tension and pressure. As
argued in §3.1 a static equilibrium for pressure and surface tension
forces exists only if ∇p = fσ for all x ∈ Ω, the discrete version of
which is

∇pτ = f σ
τ τ ∈ T . (50)

Equation 50 can only be satisfied if the pre-projection velocities
ūb

τ and ūw
τ receive the impulse (∆t/ρ⋆) f σ

τ for the bubble and water
phases, respectively. This means it is not possible to directly raster-
ize the pre-projection particle velocity ūb as suggested in Eq. 22,
since the interpolation of Eq. 46 and subsequent rasterization by
Eq. 33 will not preserve the surface tension contribution exactly on
the grid. Instead, we subtract the integrated surface tension force
on the particles and re-apply it to the grid. Using the notation intro-
duced in Eq. 22 and Eq. 33 we have

ūb
τ =

(
ub

n+1,q +
∆t
ρb

q
∇pn(xq)−

∆t
ρb

q
fσ(xq)

)b

τ︸ ︷︷ ︸
particles to grid transfer

+
∆t
ρb

τ

f σ
τ . (51)

Equation 51 ensures that, from the perspective of the pressure
solver, the applied surface tension force for the two phases is con-
sistent.

5.6. Advection

We will advect the two phases separately at the start of the time
step. For bubbles we directly advect particles using RK1, i.e., xq←
xq +∆tub

q. We use MacCormack advection [SFK*08] to advect the
water velocity.

Algorithm 1 Modified Newton solver

1: Advect phases separately. (§5.6)
2: Rasterize φ

b
τ ,φ

w
τ ,ρ

b
τ . (Eq. 30, Eq. 31, Eq. 32)

3: Initialize pressure pn=0,i. (Eq. 49)
4: Compute surface tension force f σ

τ . (Eq. 42 using Eq. 41)
5: for Newton iteration n = 0,1, . . . do
6: [a] Compute drag force density db

n,q and gradient ∂ub db
n,q.

(Eqs. 36-38)
7: [b] Compute total force density fb

n,q and gradient ∂ub fb
n,q.

(Eq. 35 using Eq. 46)
8: [c] Solve for ub

n+1,q. (Eq. 21)
9: [d] Rasterize pre-projection velocity ūb

τ . (Eq. 51)
10: [e] Rasterize drag Db

τ and ∂ub Db
τ . (Eq. 39, Eq. 40)

11: [f] Compute total force density f w
τ (uw

n,τ,0) and gradient
∂uw f w

τ (uw
n,τ). (Eq. 11)

12: [g] Compute pre-projection velocity ūw
τ . (Eq. 23)

13: [h] Solve for uw
n+1,τ. (Eq. 47, Eq. 48)

14: end for

6. Implementation

We implemented the full algorithm as presented in Fig. 5 and
Alg. 1 by leveraging a preexisting FEM solver [LSD*22] for (5c)
as well as a pressure solver with support for variable density flu-
ids [SLW*23] for (5h), but any equivalent tools would suffice. The
additional developments needed are the force computations (4, 5a,
5b, 5f) as well as the rasterization routines (2, 5d, 5e).

We render bubbles by rasterizing particles to a distance field,
often to a finer grid than the simulation grid. Since the rasteriza-
tion operation can be costly we split particles into two groups: iso-
lated or connected. Using a simulation grid resolution h, the groups
are determined by creating an initial level set as the union of SDF
spheres with radius rsurfacing

h =
√

3/4h centered at each particle.

The level set is eroded by rsurfacing
h , renormalized, and then dilated

by rsurfacing
h . Finally we sample the level set at each particle posi-

tion; if the particle falls outside of the zero iso-contour it is consid-
ered an isolated bubble, and otherwise part of a connected bubble.

Isolated particles are represented as spheres. Connected parti-
cles are represented by a level set which we construct as the union
of oriented ellipsoids [YT13; SLW*23]. We often benefited visu-
ally from rasterizing to a finer grid than the simulation grid size; in
Fig. 3 we used h/2 and in Fig. 8 we used h/3. We used the basic
liquid shader in SideFX Houdini [Hou] for both particles and the
level set, and rendered everything in Mantra.

7. Results and discussion

We demonstrate the applicability of our method by reproducing the
“hero” bubble examples from Stomakhin, Wretborn, Blom, and
Daviet [SWBD20]: an overturning barrel of air (Fig. 1, Fig. 3,
Fig. 15) and a person exhaling under water (Fig. 8). Our method
can also capture diffuse effects, such as the sand-air-water mixture
in Fig. 2 or the bubble column in Fig. 13a. Simulation time is typ-
ically dominated by the pressure solver and the need to perform
at least two pressure projections per time step, due to the Newton
loop. Table 2 lists performance numbers and settings used. All sim-
ulations were run on a 32-core machine.

Surface tension. To demonstrate the effect of surface tension in
our method we provide two parameter studies in Fig. 9 and Fig. 7.
Our method qualitatively reproduces many bubble shapes found in
nature, and the fact that axisymmetric bubbles rise faster than asym-
metric bubbles [TSG15, see Fig. 1 and Fig. 10].

Our chosen surface tension model is known to be more diffu-
sive than models with a sharp interface [HSKF07]. Figure 4 shows
a two-phase simulation with equal densities from an initial per-
fect cube at rest. The leftmost example uses a hybrid marker-based
method with a sharp interface surface tension model that has been
verified against theoretical predictions [BB12, §4]. The image is
taken at 0.25 s, after which the three versions begin to diverge. In
particular, our results are noticeably noisier.

CSF models are also known to suffer from parasitic currents
from the curvature estimate ([Pop09; KLK20]) and the difficulty
of exactly counterbalancing pressure forces. Common mitigation
strategies rely on reconstructing a sharp interface from the vol-
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Table 2: Performance numbers and settings used for our examples. The last column shows the average time breakdown for different functions:
P - pressure projection, PP - power diagram generation, I - interpolation/rasterization, C - collision resolution. We do not label functions if
they are below 10% of the total time. Clarifications: 1 Denoting basis by (T)rilinear, (P)ower. 2 The number of time subdivisions per frame.
3 The number of Newton iterations per substep.

Example ρ [kg/m3] σ [N/m] h [cm] rq [cm] Λq
1 FPS Sub.2 Nwt.3 [s] / frame [%]

Fig. 1: Overturning barrel 1 : 10 0.5 1 rsurfacing
h T 48 30 2 1312 P90

Fig. 2: Bubble-sand mixture 1 : 1000 : 1500 0 1 [0.05,0.5] T 48 2 2 17 P50/C30
Fig. 3: Barrel timelapse 1 : 10 0.072 1 rsurfacing

h T 96 10 2 601 P90
Fig. 7: Bubble sizes 1 : 10 0.0072 0.125 rsurfacing

h T 48 30 3 [6,949] P90

Fig. 8: Exhale 100 : 1000 0.36 0.1 3
√

3(h/2)3

4π
P 48 20 2 798 P15/PP30/I45

Fig. 9: Surface tension 1 : 10 [0,0.011] 0.125 rsurfacing
h T 38 30 3 [68,671] P90

Fig. 13a: Diffuse bubble column 1 : 1000 0 2 [0.05,0.5] T 24 2 2 0.1 −
Fig. 14: Effect of particle size 100 : 1000 − 0.1 − T,P 24 20 2 [7,90] −

ume fraction field, which is not possible in our mixture con-
text due to the absence of a well-defined interface. In practice,
the discrete equilibrium discussed in §5.5 is difficult to achieve.
Popinet [Pop09, §4] points out that the discrete equilibrium is
achievable for continuum surface force models when (1) the dis-
crete gradient operator in Eq. 50 for pressure and surface tension
force are identical and (2) the curvature is precisely constant. Since
φ

b and p are not stored at the same discrete locations (faces and
cells, respectively) we rely on the averaging in Eq. 41, which results
in a blurred finite-difference stencil, thereby violating condition (1).
We have investigated a cell-centered rasterization scheme for φ

b

for which a discrete equilibrium can be found, but at this point
condition (2) becomes the limiting factor. In particular, the curva-
ture computation used in Eq. 42 does not provide a sufficiently ac-
curate curvature metric for under-resolved fractional fields. Such
configurations are common, since single bubbles often tear away
from larger air regions and rise individually, causing a topology not
dissimilar from the schematic in Fig. 11. We found that the same
filtering and drift compensation strategies outlined in §5.4.1 were
needed; we therefore opted for our staggered rasterization tech-
nique, since it improves the accuracy of the pressure solver. Ul-
timately, the discrete equilibrium is not achievable for our scheme
in practice, but since the air-water dynamics we are interested in
are turbulent in nature, we have not found this to be a significant
limitation.

We show the efficacy of our surface tension force treatment by
the ablation study in Fig. 10. Without the proposed filtering in
Eq. 41, stray isolated bubble particles tend to become stuck with
zero velocity (Fig. 10, middle). Our proposed bubble velocity ras-
terization in Eq. 51, which ensures that the surface tension force
impulse on the grid is consistent for the two phases, results in more
cohesive bubble shapes (Fig. 10, right). The Drift compensation
technique we propose (Eq. 46) was not visually apparent for the
same initial configuration as the other examples in Fig. 10, so we
omitted it from this comparison; however, the technique was im-
portant in equal-density examples like Fig. 4 to prevent the bubble’s
center of mass from drifting.

Comparison to [WFS22]. In a purely diffuse scenario (φb ≪
1) where the fluid motion is calm, our method produces re-
sults (Fig. 13a) similar to that of Wretborn, Flynn, and Stom-
akhin [WFS22] (Fig. 13b). However, their method can exhibit un-

natural sinking due to the correction of the water mass matrix in
Eq. 19, which effectively increases the local density of water with
the lumped drag force matrix (Eq. 40). This artifact can appear in
turbulent scenarios where drag forces are large, and are also exacer-
bated by large bubble densities as exemplified in Fig. 13d; although
ρb < ρw the bubbles sink due to the non-zero drag force gradient
in Eq. 38. Our method overcomes this issue, as demonstrated in
Fig. 13c, by implicitly integrating drag forces in Eq.25.

Comparison to marker-particle methods. Compared to standard
marker-particle hybrid fluid solvers, which commonly default to 8
particles per voxel and a particle radius tied to the grid resolution
([ZB05; JSS*15; FHA17]), the hybrid method we present has no
such restriction. We have, however, found that the choice of particle
size does affect the kind of dynamics that are possible. Consider
Fig. 14. We release 5 cm3 of still air in the shape of a sphere. The
grid resolution is h = 1 mm, and we sample particles h/2 apart (i.e.,
there are 8 particles per voxel). Arguably, the most natural choice
is to set the volume of each particle to that of the subdivision, Vq =
h3/8; the two rightmost columns in Fig. 14 show this case. When
the surface tension is zero (top row), it is clear that there is a lack of

ρb = 1 kg/m3

(a) Ours (b) [WFS22]

ρb = 900 kg/m3

(c) Ours

(d)
[WFS22]

Figure 13: Diffuse bubble comparison. We compare our method
to [WFS22]. Our method qualitatively produce the same diffuse
effects (Fig. 13a-13b), but avoids sinking artifacts (Fig. 13c-13d).
Water density is ρw = 1000 kg/m3 in all examples. Particles
are drawn with radius 2rq and colored according to their speed.
©Wētā FX
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r = rsurfacing
h r = 3

√
3(h/2)3

4π

σ
=

0
σ
=

0.
36

Trilinear Trilinear Power

Figure 14: Effect of particle size. A result of particles being mass-
ful is that particle radii are decoupled from the grid size and can be
chosen freely. Presented are six simulations with h = 1 mm taken at
t = 0.5 s. Particles are initialized by sampling a sphere with radius
1.06 cm at h/2 intervals. ©Wētā FX

“hero” dynamics: particles quickly spread out and do not interact
much.

In marker-particle schemes the effective particle radii are much
larger than described above. In order to not disappear on the grid,
the minimum radius of a particle is the distance from the voxel
center to the corner, rsurfacing

h =
√

3/4h. Using the rsurfacing
h par-

ticle radius with our method, connected bubble shapes naturally
form even in the absence of surface tension (Fig. 14, top-left). In
this configuration, as individual particles eject from the group they
still represent a (comparatively) large region of air. The lower den-
sity forms an air channel, allowing nearby particles to flow along
the channel more easily than if they were penetrating further into
the water. For this reason, whenever we use the Trilinear method
and we seek surface tension effects, we tend to use particle radii
rsurfacing

h .

Note that, like in marker schemes, using rsurfacing
h in our method

“over-prescribes” the amount of air in the simulation by a factor

4π

(
rsurfacing

h

)3
/3

h3/8
≈ 22,

and is made possible by our introduction of the bubble fraction
clamp φ

c. Effectively, a massful particle that is “too large” behaves
like a marker particle.

We provide a qualitative comparison between our method and
that of Stomakhin, Wretborn, Blom, and Daviet [SWBD20], which
leverages a marker-particle-based discretization, in Fig. 15. The ge-
ometric shapes produced by the two methods are similar, although
the speed with which the column of air rises is slower with our
method; we suspect the difference is due to the addition of the
drag force model in Eq. 7. This highlights one traditional chal-
lenge of combining distinct diffuse and hero models: augmenting
the method of Stomakhin, Wretborn, Blom, and Daviet [SWBD20]
with additional diffuse bubbles would prove challenging, since the

sub-grid dynamics model for tiny particles may cause them to rise
at rates inconsistent with their grid-scale counterparts. Our model,
since it relies on a unified underlying physical model and dis-
cretization for both diffuse and hero regimes, does not have the
same difficulty.

The Power method does not leverage the fraction clamp, and
thus the real volume (i.e., h3/8 for 8 particles per voxel) must be
used. Although it is diffusive, similar to the Trilinear method with
“small” particles, the Power method tends to behave better with
the surface tension force: the motion is typically less jittery, and
the formed bubble shapes are smoother. We attribute this to the
regularization strategy of moving particle positions to the center of
power cells, which ensures that the bubble volume on the grid is
conserved (up to numerical precision). A realistic scenario where
we used the Power method is shown in Fig. 8.

We make a final point here that for any simulation where the
fraction clamp φ

c ̸= 1, the bubble mass on the grid is not conserved
due to the choice of dividing by unclamped fraction φ̄ in Eq. 32. It
would be interesting to explore strategies that take the compressible
nature of these configurations into account, but that would remove
the “marker↔massful” duality which has proven useful. We leave
this for future work.

Ours [SWBD20]

t

Figure 15: Barrel comparison. We recreate the overturning bar-
rel from Fig. 3 using [SWBD20] (right column) and compare with
our method (left column) at two different times (top and bottom,
respectively). Particles are rendered with motion blur, and colored
according to their speed. ©Wētā FX
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8. Conclusion

We have proposed a new discretization for bubble dynamics us-
ing a hybrid mixture method where air is represented by massful
particles surrounded by Eulerian water. The phases are coupled
together in a modified stabilized inertia-aware Newton iterative
scheme that interleaves particle force computations with an Eule-
rian variable density pressure projection. We additionally extended
the continuum surface force model of surface tension [BKZ92] for
our mixture context. Taken together, these contributions enable our
method’s key distinguishing property: the ability to smoothly repro-
duce the behavior of both sub-grid diffuse bubble and grid-resolved
hero bubbles in a single unified discretization.

Our approach could benefit from a particle splitting/merging
technique to keep particles at an optimal radius near hero regions
and smaller in diffuse regions. This could potentially be achieved
in a manner similar to transition models used for water-in-air states
([LSD*22; SLW*23; LTKF08]) or inter-particle interaction models
[JS17].
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Appendix A: Equations of motion for an incompressible
two-phase mixture

Here we show that the equations of motion Eqs. 1-3, together with
conservation laws for density and fractional amounts, describe an
incompressible two-phase mixture, and that the full set of equations
describe a closed system.

We start with the bubble phase, which we for now assume is
purely ballistic

Dbub

Dt
= g (52)

This is a closed system of 3 scalar equations (or 1 vector equation)
with 3 components of the velocity field being the unknowns. We
can further add the bubble mass conservation equation

∂φ
bρb

∂t
+∇· (φbρbub) = 0, (53)

and also the bubble fraction evolution equation

∂φ
b

∂t
+∇· (φbub) = 0, (54)

which implies conservation of bubble volume, or incompressibility
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of the bubble phase. The system 52, 53, 54 is closed as it contains
5 equations and 5 unknowns. We can also build the same exact sys-
tem for water, and get a system of 10 equations with 10 unknowns

D⋆u⋆

Dt
= g, (55)

∂φ
⋆ρ⋆

∂t
+∇· (φ⋆ρ⋆u⋆) = 0, (56)

∂φ
⋆

∂t
+∇· (φ⋆u⋆) = 0, (57)

where ⋆ ∈ {b,w}. Requiring fractions for bubbles and water to add
up to 1, and adding a Lagrange multiplier in the form of the pore
pressure, yields a system of 11 equations with 11 unknowns:

φ
⋆ρ⋆

D⋆u⋆

Dt
= φ

⋆ρ⋆g−φ
⋆∇p, (58)

∂φ
⋆ρ⋆

∂t
+∇· (φ⋆ρ⋆u⋆) = 0, (59)

∂φ
⋆

∂t
+∇· (φ⋆u⋆) = 0, (60)

φ
b +φ

w = 1. (61)

One could also add drag and surface tension force density contribu-
tions to the right-hand side of Eq. 58. Note that, Eq. 61 is equivalent
to

∂φ
b

∂t
+

∂φ
w

∂t
= 0, (φb +φ

w)
∣∣∣
t=0

= 1, (62)

which with the use of Eq. 60 becomes

∇· (φbub +φ
wuw) = 0, (φb +φ

w)
∣∣∣
t=0

= 1,

matching the mixture incompressibility condition in Eq. 3.

In our case, since we use particles with assigned and preserved
volumes to compute bubble fraction values on the grid (Eq. 30),
it eliminates the need for Eq. 60. Likewise, using densities stored
and preserved on particles to compute grid-based density values
(Eq. 32), eliminates the need for Eq. 59. Ultimately, this leads to
the system of Eqs. 1-3.

We make a final point: in mixture setups the material density of
a phase, water or air, is the mass of the phase per unit volume of
that phase. It is generally different from the mass of a phase per
unit volume of the world space (since the phase may only partially
occupy that volume), which can be obtained from the phase density
via multiplication by its fraction. Unlike material densities force
densities are defined per unit volume of the world space. In order
to compute the force exerted per unit volume of a phase, the force
density needs to be divided by its fraction.

Appendix B: Momentum conservation of drag force rasterization

Consider the drag force contribution from a single particle

∑
τ∈T

φ
w
τ DτVτeτ

Eq. 39
= ∑

τ∈T
φ

w
τ eτ (Dq · eτ)Vqωqτ

=Vq ∑
ξ∈{x,y,z}

(
Dq · eξ

)
∑

τ∈Tξ

φ
w
τ eτωqτ (63)

Eq. 34
= Vqφ

w(xq)Dq (64)
Eq. 37
= Vqdb

q.

On line 63 we can identify ∑τ∈Tξ
φ

w
τ eξωqτ as one component of the

interpolation in Eq. 34. Combined with the component-wise mul-
tiplication on line 64 (same as in Eq. 37) we see that the proposed
drag force rasterization scheme conserves the total drag force.

Appendix C: Momentum conservation of drift compensation

We consider the shifted surface tension force defined per face and
pocket fσ

τ −χν, τ∈Oν which by definition in Eqs. 43-44 integrates
to zero over the pocket (Eq. 45).

We can also perform this integral on the particles. Assume that
the all faces a particle q rasterize to belong to single pocket, that
is ∀τ ∈ T : ωq,τ > 0 =⇒ Oν for any pocket ν. This assumption
is true for our choices of Λq. It makes sense to consider q as part
of the pocket ν, which we will denote as q ∈ Pν. Then the surface
tension force integral on the particles is

∑
q∈Pν

Vq f σ(xq)
Eq. 46
=

∑
q∈Pν

Vq

(
∑

τ∈Oν

φ
c
τ( f σ

τ −χν)ωqτ

)
.

We can reorder the two sums and identify the bubble volume φ
b
τVτ

∑
τ∈Oν

(
φ

c
τ( f σ

τ −χν) ∑
q∈P

Vqωqτ

)
Eq. 31
=

∑
τ∈Oν

φ
b
τVτ( f σ

τ −χν).

Then,

0 Eq. 45
= ∑

τ∈Oν

Vτ

(
f σ
τ −χν

)
= ∑

τ∈Oν

φ
b
τVτ

(
f σ
τ −χν

)
+ ∑

τ∈Oν

φ
w
τ Vτ

(
f σ
τ −χν

)
(65)

= ∑
q∈Pν

Vq f σ(xq)+ ∑
τ∈Oν

φ
w
τ Vτ

(
f σ
τ −χν

)
. (66)

That is, whether you integrate the shifted surface tension force on
the grid (Eq. 65) or particles (Eq. 66) the force is momentum con-
serving when considering any pocket.
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