
Pahi: A Unified Water Pipeline and Toolset
Alexey Stomakhin

Wētā Digital
United States

st.alexey@gmail.com

Steve Lesser
Wētā Digital
New Zealand

slesser@wetafx.co.nz

Joel Wretborn
Wētā Digital

Sweden
joel@wbn.se

Sean Flynn
Wētā Digital
New Zealand

sflynn@wetafx.co.nz

Johnathan Nixon
Wētā FX

New Zealand
jnixon@wetafx.co.nz

Nicholas Illingworth
Wētā FX

New Zealand
nillingworth@wetafx.co.nz

Adrien Rollet
Wētā FX

New Zealand
arollet@wetafx.co.nz

Kevin Blom
Wētā FX

New Zealand
kblom@wetafx.co.nz

Douglas McHale
Wētā FX

New Zealand
dmchale@wetafx.co.nz

Figure 1: A shot from Avatar: The Way of Water (top) completed with Pahi through a distributed simulation and a breakdown of different
water components (bottom): bulk fluid surface, bubbles (blue), foam (white), spray (green), and mist (red). ©Disney and Wētā FX.

ABSTRACT
We present Pahi, a unified water pipeline and toolset for visual
effects production. It covers procedural blocking visualization for
preproduction, simulation of various water phenomena from large-
scale splashes with airborne spray and mist, underwater bubbles
and foam to small-scale ripples, thin film and drips, and a com-
positing system to combine different elements together for ren-
dering. Rather than prescribing a one-size-fits-all solution, Pahi
encompasses a number of state-of-the-art techniques from refer-
ence engineering-grade solvers to highly art-directable tools. We do
a deep dive into the technical aspects of Pahi components and their
interaction, and discuss practical aspects of its use on Avatar: The
Way of Water. We were honored to be awarded the Visual Effects
Society (VES) 2023 Emerging Technology Award for this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0238-9/23/08. . . $15.00
https://doi.org/10.1145/3603521.3604291

CCS CONCEPTS
• Computing methodologies→ Physical simulation; Simula-
tion types and techniques.

KEYWORDS
water, simulation, pipeline

ACM Reference Format:
Alexey Stomakhin, Steve Lesser, Joel Wretborn, Sean Flynn, Johnathan
Nixon, Nicholas Illingworth, Adrien Rollet, Kevin Blom, andDouglasMcHale.
2023. Pahi: A Unified Water Pipeline and Toolset. In The Digital Production
Symposium (DIGIPRO ’23), August 05, 2023, Los Angeles, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3603521.3604291

1 INTRODUCTION
Avatar: The Way of Water required 2,225 water shots ranging from
lingering close-up character interaction to frenetic open-ocean
vehicle and giant creature chases, such as the one shown in Figure 1.
Water development began in 2017, with the establishment of the
Water Development Project. We treated this project as a miniature
show consisting of challenging test shots, reference shoots, and
dailies, all built to represent the upcoming water challenges. Rather
than sprinting to deliver these shots, we used the project to evaluate
and continuously refine the water pipeline, to ensure the toolset

https://doi.org/10.1145/3603521.3604291
https://doi.org/10.1145/3603521.3604291
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603521.3604291&domain=pdf&date_stamp=2023-08-05

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA Stomakhin, A. et al

could support a crew rapidly onboarding to deliver thousands of
similar shots with consistent industry-leading fidelity.

The Water Development Project found no single water solver
in FX would work universally; we needed a new water toolset to
give artists options from high-precision physics-based simulators
to intuitive artistically driven components.

2 PREVIOUS WORK
Water is a fascinating and captivating phenomenon, which always
attracts viewer attention. Various tools for creating faithful water
effects have been developed and advanced by hundreds of academic
and industry researchers for decades.

While there is no shortage of literature on specialized water
solvers and techniques, there appear to be significantly less pub-
lishedmaterials on how to build a holistic productionwater pipeline.
Garcia et al. [2016] provides insights into procedural ocean rigs
and Palmer et al. [2017] describes render graph compositing, both
used to deliver Disney’s Moana (2016). Stomakhin and Selle [2017]
shows how fluxed animated boundaries (FAB) driven by procedural
Stokes/Gerstner waves can be used for open-ocean FLIP fluid simu-
lations. SideFX Houdini and Autodesk Bifröst are current state-of-
the-art frameworks encompassing large collections of water tools,
which studios adapt and pipeline according to their needs. While
we were able to utilize some existing techniques and technology,
there was a requirement to build custom tools to ensure we had
a robust, scalable, end-to-end water pipeline which we describe
below. Many of the underlying motivations and reasons for such a
requirement are discussed in detail in [Lesser et al. 2022; Wretborn
et al. 2022].

3 ARCHITECTURE OVERVIEW
We split the major stages of water work on Avatar: The Way of
Water into three phases: first we developed a common input format
for client deliveries to the studio, second we refined it with the
simulation tools, and third we rendered it into final pixels. We
refer to this overall water architecture as Pahi 1. Pahi focuses on
providing artists with a modular toolkit for tackling their shots
using a wide suite of in-house and third-party components, with
near-automatic support for incorporating the results back into a
format usable by the next stage. The rest of this section focuses
on the high-level stages of Pahi. Section 4 provides more detail
on individual components. Section 5 discusses the use of Pahi in
production.

3.1 Common input
Water started with preproduction and on-set performance capture
using a real-time, physically based, GPU ocean-spectra deformer
(see [Horvath 2015]), built for the stage team at a client studio.

Previously, client water handover was often very approximate,
using techniques such as manually deformed planes or animated
cylinders as a stand-in for the desired wave heights and timings.
Non-physical wave indicators limited the ability to use fluid solvers

1The word “pahi” is Tahitian for a large seagoing Polynesian ship with two connected
hulls. Pahi’s original development started with the core ideology of seamlessly con-
necting the two hulls of our simulation pipeline, Houdini and Loki [Lesser et al. 2022],
to form one toolset for artists to use.

FAB

volumes

Collision

volumes

Inputs

Preprocess

Loki

Secondaries

solver

State machine
solver

Thin film

solver

Wave curve

solver

Procedural

ocean spectra

Characters and
environment

Volumetric fields

and primvars

Spray blobbies

Wave curves

Diffuse bubble

instances

Foam particles

Spray particles

Bulk water

particles

Thin film

particles

Diffuse bubble

particles

Mist particles

Foam stamping

Bulk water

surface

Thin film

surface to render

simulator

Multi-phase

solver

Hero bubble

particles

Hero bubble

surface

Residual

wetness solver

Residual

wetness meshes

Figure 2: Overview of different Pahi components, with an example
data flow between them representative of a typical open-ocean shot.
©Wētā FX.

to their full potential, as physical water would be unable to move
at the given speed and height, leading to many layers of additional
warping or other manipulations to match the clients’ waves.

By giving the client a new procedural water tool as a physical
starting point for water, we ensured that subsequent work that built
on client water would be able to use state-of-the-art fluid solvers
and still respected the original intent. We found that using ocean
spectra provided a good balance of controllability and performance.
The real-time ocean-spectra deformer gave the client a better early
indication of lighting, letting them compose their shots on stage,
accounting for water’s interaction with light, and resulting in fewer
surprises in the transition to the fully rendered delivery.

We also used the spectra to run simple buoyancy sims for char-
acters, to give animators a physically plausible starting point.

3.2 Flexible simulation
Once the client handed over the ocean spectra to the VFX studio,
the artists’ tooling options rapidly expanded out to a new and
improved suite of water solvers. The huge variety of water shots
required a flexible approach for the FX department to turn client
water into the final photoreal deliverable. Many different kinds of
simulations needed to be mixed and layered using numerous differ-
ent water tools, ranging from direct usage of the client wave spectra,
to distributed FLIP simulations, to specialized components such as
wave curves or anisotropic surfacing (see Figure 2). The simulation
framework Loki [Lesser et al. 2022], with a focus on coupling, state
transitions, and distributed computing was the centerpiece for most
of these solvers.

Usually the outputs of Pahi would be Loki compositing graphs,
which are networks of volume and particle compositing built to
combine the simulation results in a spatially varying and lossless

Pahi: A Unified Water Pipeline and Toolset DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

form. These Loki compositing graphs could be sampled for further
simulations, or published and passed to Lighting to be rendered.

3.3 Renderables
The Manuka renderer [Fascione et al. 2018] generated the final
pixels by sampling Loki compositing graphs (which we call render
graphs) from Pahi. The goal of these render graphs is to seam-
lessly and losslessly combine the results from the wide variety of
water tools the Pahi iterations used to bring the water together
into a cohesive whole. This lossless combining process was par-
ticularly important since the water tools were generally run at a
variety of resolutions, leading to some components such as wave
curves outputting very fine detail, while other components such
as bulk simulations or wave spectra providing more coarse detail
or completely procedural data. Rather than discretizing everything
together into a uniform format such as a VDB [Museth 2013], Loki
render graphs, such as the one shown in Figure 3, combine the
various components per particle or volume sample; and they can
load and sample each data source at their original resolution. This
avoids the need to select a single uniform voxel size, and supports
the modular approach of Pahi to mix and match components at will
without the need to worry about combining multiple layers, which
can lead to degradation in quality.

4 PAHI COMPONENTS
4.1 Bulk water
The cornerstone of our simulation pipeline was a FLIP-based bulk
water solver, supporting all major state-of-the-art features including
variational pressure projection [Bridson 2015], variational viscosity
[Batty and Bridson 2008], surface tension [Stomakhin et al. 2019],
lossless transfers between Lagrangian particles / Eulerian grid [Fu
et al. 2017], and narrow-band representation [Ferstl et al. 2016].
Emission, sinking, and open-boundary ocean domains were set up
using FABs [Stomakhin and Selle 2017].

While surface tension,𝜎 = 0.072N/m, and viscosity, 𝜇 = 10−3 Pa·s,
of water have little-to-no effect on the fluid dynamics when sim-
ulated at voxel sizes of about 1 cm or larger (which we verified
experimentally) and can be disabled for efficiency, they play a promi-
nent role at sub-centimeter scales, leading to formation of thin film
sheets, tendrils, and oscillating droplets (see Figure 4).

Procedural data

Procedural ocean
waves spectrum 0

Procedural ocean
waves spectrum 1

Procedural ocean
waves spectrum N

…
Combine ocean

spectrums

Blend mask

volume

SDF blend

Wave curves

geometry

Wave curve
deformer

To renderer

Voxel data Geometry data Operations

Bulk water

volume

Figure 3: Example simplified render graph demonstrating creating
and mixing procedural open-ocean waves, loading a surfaced bulk
fluid cache from disk, blending the two, and deforming by wave
curves. Each operation in the render graph is performed per sample
requested by the renderer to ensure no intermediate discretizations
are losing detail throughout the process. ©Wētā FX.

Figure 4: Thin film and drips on a character walking out of the
water, simulated using our bulk water solver at voxel size 0.6 mm
with surface tension and viscosity enabled. ©Disney and Wētā FX.

4.2 Loki state machine
A basic FLIP solver models water dynamics in a vacuum, which
is typically sufficient to achieve realistic looks at smaller scales
(≲1 m splashes) and moderate velocities (≲1 m/s). However, at
larger scales and higher velocities, air dynamics start to have a
prominent effect on water behavior and need to be taken into
consideration. To efficiently capture these large-scale scenarios
while still providing the essential small-scale details such as droplet
interactions driven by surface tension, we adopted a multi-scale
state machine approach, as briefly outlined in the Applications
section of [Lesser et al. 2022]. In what follows we describe how we
expanded upon this approach along with practical considerations
for delivering a large VFX production using this technique.

A typical large-scale shot, such as the one shown in Figure 5,
would be run with a voxel size of 5-20 cm. To efficiently capture
the essential small- and large-scale water features simultaneously,
we used multiple solvers that excel at distinct scales, run in tan-
dem, with water automatically transitioning between the solvers
while conserving mass and momentum, all coupled with air, and
completed in a single pass.

Our state machine approach simulates the dynamics of water
in five different states. We will focus on the airborne states in this
section and the bubbles and foam states in Section 4.6.

• Bulk water represents the coarse volumetric motion of
water as it interacts with (typically) large-scale fast-moving
colliders. We simulated bulk water as per Section 4.1.

• Spray consists of sub-voxel droplets, represented as particles,
that split off from the bulk water. Spray droplets are still
large enough to interact with each other to form irregular
shapes and tendrils. To capture this interaction we utilized
smoothed particle hydrodynamics (SPH).

• Mist is composed of even smaller droplets that form from
spray as it breaks up and splits. Due to their size they are
incapable of forming connected structures, and we simulated
mist as ballistic particles only interacting via binary droplet
collisions (BDC) [Jones and Southern 2017].

• Bubbles and foam represent air pockets submerged in wa-
ter. We simulated them using the method described in [Wret-
born et al. 2022], either together with the other water states
or in a separate pass for additional control.

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA Stomakhin, A. et al

We provide a schematic breakdown of our water state machine
in Figure 6. We will reference the circled numbers that label the
transitions in this figure as we describe the flow of data below.

4.2.1 Transition splitting. As liquid transitions from bulk water to
the spray ① and mist ②③ representations, we increase the effective
resolution by splitting the particles into smaller ones. To split a
particle, referred to as a “parent”, we delete it and then emit new
particles repeatedly until the parent’s volume is accounted for. To
compensate for any small differences between the total volume
of the split particles and parent volume, related to random sam-
pling, we inflate or deflate the split particles uniformly such that
the volume is conserved exactly. Transition splitting is important
because it allows the sub-grid liquid dynamics to be captured with
finer details. Splitting particles was an intuitive choice because it is
an approximation of the real-world phenomena of airborne water
breaking up into droplets and thin features, as external forces such
as wind act upon it.

The radii of the new particles are determined by sampling a
power-law probability density function

Π(𝑟) =


𝐴

𝑟𝜂
, for 𝑟 ∈ [𝑟min, 𝑟max],

0, otherwise,
(1)

where 𝑟min and 𝑟max are the smallest and the largest split particle
sizes allowed, respectively, 𝜂 is a parameter that allows the user
to control the balance of small and large droplet splits, and 𝐴 is
the normalization constant determined from 𝑟min, 𝑟max, and 𝜂. We
found 𝜂 = 2 to work well in practice. Initializing spray and mist
particles in this distribution ensured that we avoided the unnatu-
ral uniformly sized ballistic particles that result from a standard
FLIP simulation. We chose to use this particular probability density
function, originally formulated to capture bubble distributions in
breaking waves [Deike et al. 2016], because we were already using

Figure 5: Frame of a shot (top) demonstrating interaction of wa-
ter with a 116 m long vehicle simulated using our state machine
approach. The different states are color coded (bottom): bulk (blue),
spray (green), and mist (red). ©Disney and Wētā FX.

Air

Mist

Spray

Bulk Water
Di�use
Bubbles

Foam

5

6

1

2

3 4

Figure 6: Schematic representation of the flow of data in our water
state machine. Solid lines indicate transitions between states. As
heuristic thresholds (Section 4.2.2) are met, bulk water (blue) splits
into spray (green), which splits further into mist (red). Diffuse
bubbles (outlined in purple) are emitted (dashed line) based on
aeration (Section 4.6), and become foam particles (outlined in gray)
as they reach the bulk water surface (teal). Each state is coupled
with the fluid that surrounds it (air or water). ©Wētā FX.

it for bubble emission; and we found that, with a smaller value
of 𝜂 (we typically used 2.7 for bubbles), it provided the spray and
mist distribution a good starting point which was then enhanced
during simulation with SPH and BDC, designed specifically for
water droplet interactions.

Our users have found tuning 𝑟min and 𝑟max difficult, since de-
pending on how those related to the radius of the parent particle
𝑟parent, there would often be either too many splits, leading to mem-
ory overflows, or no splits at all. To provide a more straightforward
way to control the radius distribution, we instead allowed users
to directly specify the target characteristic number of splits 𝑘 , as
well as the split ratio 𝜉 = 𝑟max/𝑟min. We would then determine 𝑟min
from

𝑟3min =
𝑟3parent

𝑘

4 − 𝜂

1 − 𝜂

𝜉1−𝜂 − 1
𝜉4−𝜂 − 1

, (2)

and 𝑟max = 𝜉𝑟min per parent particle, and proceed with splitting as
previously described. For the derivation details of equation (2) we
refer the readers to Appendix A.

We allowed the target number of splits 𝑘 to be set per particle
based on the particle’s transition weight𝑤 ∈ [0, 1], which we origi-
nally envisioned to be determined from local dynamic properties of
the fluid, which we would linearly remap to a global user-defined
range [𝑘min, 𝑘max]. By default we used 𝑘min = 2 in all scenarios;
𝑘max = 32 for transitions from bulk water to spray ① and mist ③,
and 𝑘max = 12 for transitions from spray to mist ②. At times we
reduced 𝑘max from these defaults to decrease the memory footprint
of very large simulations. Our users have experimented with mul-
tiple different heuristics for computing transition weights𝑤 , and
eventually settled on a simple clamped linear remapping of parent
particle velocity magnitude from a user-defined range [𝑣min, 𝑣max]
to [0, 1]. We used a default velocity range of [0, 20] m/s.

We determined the position of each split particle by uniform
random sampling of a point in a sphere centered about the parent

Pahi: A Unified Water Pipeline and Toolset DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

particle with a radius equal to 𝑟parent𝛽 , where 𝛽 is a user-defined
multiplier used to control how spread out splits are as they are
emitted. We found the value 𝛽 = 2 to work well across the majority
of the shots. For split particles emitted into the spray state ①, we
encountered issues when particles would emit in overlapping con-
figurations. SPH forces would push particles apart upon emission,
which would break up the important spray droplet and tendril struc-
tures, and, without enough substeps, cause instabilities. To avoid
this we would iteratively push particles apart from one another
until there were either no overlaps, or to a maximum number of
iterations 𝑖max. We used 𝑖max = 10, but found that generally it only
took 1-3 iterations to remove all overlaps.

The velocities of split particles were determined differently de-
pending on the source state of the transition. For particles transition-
ing from bulk water ①③, the split particle velocity was tri-linearly
sampled from the bulk water velocity field. For particles transition-
ing from spray ②, the velocity was determined by computing an
inverse distance weighted average of the nearby particle velocities.
Users could also optionally add jitter to the velocities, but this was
rarely needed in practice.

4.2.2 Transition heuristics. We computed heuristics on the water
at each state to determine when the data would transition from one
state to the next, based on user-defined thresholds. We again refer
to the circled numbers in Figure 6 as we describe the heuristics. The
summary of all transition thresholds with recommended default
values is presented in Table 1.

Bulk water particles transition to the spray particles ① when all
of the following conditions are met

𝛼 > 𝑇𝛼
𝑠 , (3)

𝜙 < 𝑇
𝜙
𝑠 , (4)

𝜓 < 𝑇
𝜓
𝑠 , (5)

𝑣 > 𝑇 𝑣
𝑠 , (6)

𝑛 < 𝑇𝑛
𝑠 ∨ ∥∇𝑝 ∥ < 𝑇

𝑝
𝑠 , (7)

where 𝛼 is the particle’s age in seconds from when it was emitted
into its current state, 𝜙 is the distance to the bulk water surface,𝜓
is the distance to the nearest collider surface, 𝑣 is the velocity mag-
nitude of the particle, 𝑛 is the number of particles in the containing
voxel divided by the average particle-per-voxel density of the bulk
water on emission (which is 8 for a typical FLIP implementation),
and 𝑝 is the pressure of the bulk water at the current particle posi-
tion. When the pressure gradient magnitude at a particle position is
low, it indicates a region of the bulk water that is nearly in free fall.
We found this heuristic to be the most indicative of regions that
should transition to spray. The other heuristics functioned mostly
to prevent problematic transitions, like bulk water becoming spray
deep below the surface, and also to provide users more control over
transitions. 𝑇 ·

𝑠 represent user-defined thresholds for each of the
quantities.

Table 1: Summary of our state machine transition heuristic thresh-
olds. The defaults were determined by our users after testing on
a variety of water scenarios. We found that they generalized well
across many different scales and resolutions.
Symbol Default Description
𝑇𝛼
𝑠 .05 s Spray age threshold

𝑇
𝜙
𝑠 -2 cm Spray to bulk-distance threshold

𝑇
𝜓
𝑠 0 cm Spray to collision-distance threshold
𝑇 𝑣
𝑠 2.5 m/s Spray speed threshold

𝑇𝑛
𝑠 .35 Spray density threshold

𝑇
𝑝
𝑠 .5 kg/(cm·s)2 Spray pressure gradient magnitude threshold

𝑇𝛼
𝑚 .1 s Mist age threshold

𝑇
𝜙𝑐

𝑚 0 cm Mist to collision-distance threshold
𝑇𝑁 2 Mist neighbor count
𝑇 𝑣
𝑚 5 m/s Mist speed threshold
𝑇𝛼
𝑏

.1 s Back to bulk age threshold
𝑇
𝜙

𝑏
0 cm Back to bulk distance threshold

Spray particles transition to mist particles ② when

𝛼 > 𝑇𝛼
𝑚, (8)

𝜓 < 𝑇
𝜙𝑐

𝑚 , (9)
𝑁 < 𝑇𝑁 , (10)
𝑣 < 𝑇 𝑣

𝑚, (11)

where 𝑁 represents the neighbor particles count, with the rest of
the rules repeating those for transitioning from bulk to spray ①. 𝑁
was computed by counting the number of particles within a distance
𝑑𝑁 up to a maximum of 𝑁max. We used defaults of 𝑑𝑁 = 5𝑟parent
and 𝑁max = 50. We chose to use 𝑁 rather than particle-per-voxel
density 𝑛 here because there is no voxel grid associated with the
SPH spray particles.

Spray and mist particles transition back into bulk particles ④

when

𝛼 > 𝑇𝛼
𝑏
, (12)

𝜙 < 𝑇
𝜙

𝑏
. (13)

Because the spray and mist particles entering the bulk water would
be of various radii, and our bulk water assumes a uniform radius, we
had to take additional steps to ensure this transitionwasmomentum
conserving. Upon transition, the velocity of mist and spray particles
was transferred to the bulk water weighted by their mass. After
the velocity transfer, noting that bulk water particles only act as
markers in the volume, the radii of the newly transitioned particles
were updated to be that of the rest of the bulk particles.

We also decided to allow bulk water particles to directly transi-
tion into mist ③. Our SPH solver experienced stability issues and
required a higher number of substeps when spray particle radii
became too small. When bulk particles were split into many smaller
particles during transitions to spray, we immediately put the small-
est particles under a radius threshold into mist, bypassing the spray
state and thus avoiding this SPH instability.

4.2.3 Air coupling. We simulated the air surrounding water as an
Eulerian fluid, coupled together with each of the water states. The
coupling implementation varied depending on the representation
of the state. For spray and mist—Lagrangian particulate states—we
used the coupling scheme from [Wretborn et al. 2022], via buoyancy

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA Stomakhin, A. et al

and drag forces. Inspired by [Daviet and Bertails-Descoubes 2017],
we generalized the drag force to an arbitrary non-linear degree 𝑐

𝐹 = 𝜒𝑎𝜇𝑎𝑟

[
6𝜋 + 𝜋

4

(
2𝑟𝜌𝑎 ∥Δ𝒗∥

𝜇𝑎

)𝑐−1]
Δ𝒗, (14)

and found the values 𝑐 ∈ [2.0, 2.4] to produce the most natural
breakup patterns between particle sizes of different scales. The
dependence on particle size in the drag force causes the trajectory
of tiny mist particles to be dominated by the air, while large spray
particles more easily fall to the ground. Here 𝜒𝑎 , 𝜇𝑎 , and 𝜌𝑎 are
dimensionless drag coefficient, dynamic viscosity, and density of
air, respectively. 𝑟 is the radius of the affected water particle, and
Δ𝒗 is its velocity relative to air. We found 𝜒𝑎 ∈ [2.0, 4.0] to work
well in practice. Since water is much heavier than air we found that
the buoyancy contribution did not have any significant effect, and
discarded it for efficiency.

For air interactingwith bulkwaterwe initially explored a strongly
coupled scheme via a single incompressible two-phase pressure
solve. While this approach is accurate, it provided little artist con-
trol since there was no straightforward way to change how much
water is affected by the wind, and vice versa. As a result we instead
resorted to a weakly coupled scheme as follows: since air is much
lighter than water, we used the signed distance field (SDF) of the
bulk water as a collider for the air’s incompressibility solve. In turn,
the air affected bulk water via a drag force, applied explicitly to the
surface layer of liquid particles at each timestep.

Using the water SDF as a kinematic collider with the air occa-
sionally created small trapped air pockets that would get squeezed,
resulting in sudden spikes in velocity. This led to instabilities when
these regions of air would drag the water, and caused unnatural
spurts of spray and mist. To avoid these issues, we clamped the rel-
ative velocity between the air and water to 10 m/s when evaluating
all drag forces.

4.2.4 Discussion. The Loki state machine was crucial for deliver-
ing the volume of large-scale water shots in Avatar: The Way of
Water while maintaining a consistent look, especially considering a
large number of the shots were completed by junior artists. Typical
large-scale water workflows require several separate iterations and
supervisor approvals, first simulating the bulk water, then adding
whitewater effects in layers as a post-process, and so forth. Our
approach allowed us to get many of these layers completed and
approved in a single pass. This also had the added benefit of provid-
ing a better “connectivity” between the states because they were
coupled together in the same simulation.

One of the primary goals of this state machine approach was that
it should generalize well across a wide variety of scenarios, scales,
and resolutions. We were generally successful in achieving this
goal. We also provided a “state machine lite” tool that would apply
our transition and splitting techniques on pre-cached simulations
where additional spray and mist elements were needed.

4.3 Anisotropic surfacing
We employed the approach of [Yu and Turk 2013] to create a render-
able surface from simulated particles, which worked especially well
for thin tendrils and sheets. However, we made a few modifications
that we describe here. Following the original paper and using their

Figure 7: A test particle set with 1D, 2D, and 3D features (left);
ellipsoids from [Yu and Turk 2013] implementation (middle) and
from our approach (right). ©Wētā FX.

notations we computed a singular value decomposition (SVD) of
the covariance matrix 𝑪 as

𝑪 = 𝑹Σ𝑹𝑇 , (15)
Σ = diag(𝜎0, 𝜎1, 𝜎2), (16)

where 𝑹 is a rotation matrix with principal axes as column vectors,
and Σ is a diagonal matrix with eigen values 𝜎0 ≥ 𝜎1 ≥ 𝜎2 ≥ 0.
Unlike the original paper, we then defined

𝑮 =
√
Σ−1𝑹𝑇 , (17)

√
Σ−1 = diag(1/√𝜎0, 1/

√
𝜎1, 1/

√
𝜎2), (18)

and used it to build the anisotropic kernel

𝑊 (𝒓 , 𝑮) = 𝑃 (𝑮𝒓), (19)

where 𝑃 is a kernel of a unit sphere. The need for the square root
comes from an observation that 𝜎𝑖 are in fact the squares of the
principal axes of the best-fitted ellipsoid to the input particles. This
can also be seen from the dimensional analysis, as the units of 𝑪 are
[𝑚2] by construction. We have found that this simple correction
resulted in significantly smoother surfaces with fewer overly flat
and spiky artifacts (see Figure 7). It also eliminated the need for
clamping 𝜎𝑖 as proposed in the original paper. We only clamped
all singular values to a fraction of the rasterization grid voxel size
to avoid extremely thin ellipsoids that cannot be captured by the
grid. Additionally, we found that the smoothing parameter 𝜆 = 1
gave the best visual results, which fits well with the core idea of
the method.

In order to reduce aliasing artifacts when building the final rep-
resentation of the surface, instead of building a density field by
splatting and adding density functions W of ellipsoids, we splatted
approximate SDFs of ellipsoids as deformed SDFs of unit spheres,
and combined them via a minimum operation. As a result, we
changed the meaning of 𝑃 from a fog volume to an SDF of a unit
sphere.

4.4 Thin film and drips
To make human-sized characters appear wet, with detailed sheets
of water covering and rolling off of them as (can be seen in Figure 4),
we utilized the approach of [Stomakhin et al. 2019]. A 1-5 cm voxel
size bulk water simulation surrounding characters was enhanced
by an additional bulk water pass at <1 mm voxel size—dubbed thin
film—with viscosity, surface tension, and contact angle extrapo-
lation to achieve adhesion and natural breakup into tendrils and
droplets.

In order to be able to increase resolution this drastically and still
have simulations complete in reasonable amounts of time we had
to limit them to areas of visual significance. We decided to emit
thin film particles from the contact line between a character and

Pahi: A Unified Water Pipeline and Toolset DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

the surrounding bulk fluid surface and immediately cull them on
reentry back into the bulk (see Figure 8). To achieve this practically,
we scattered points over the character surface. At each timestep we
checked which points exited the bulk water, and splatted them to
make a FAB emitter volume, typically 1-3 voxels thick, depending
on how much thin film needed to be pulled out of the bulk water
for a specific shot. We set the emission velocity to the local velocity
of the character mesh, since the motion of thin layers of water next
to colliders is largely dominated by viscosity forces.

4.5 Adding details to surfaces
Residual wetness and rivulets. We created a new geometry-based

residual wetness system implemented as a Houdini digital asset
(HDA) that was capable of generating realistic droplets, trickling
rivulets, and flowing rain water. This technique was used on a
wide range of scenarios, including characters emerging from water,
soaked in the rain, and sweating due to exertion (see Figure 9).
Initially this system was written to create convincing static wet
appearances for characters in shots following those with character-
fluid interactions. As the show progressed we ended up using it in
dynamic scenarios in conjunction with the FX simulations.

Our residual wetness system created approximations of two
visual phenomena: first, static distributions of droplets that resulted
from coalescing water, and second, dynamic water streams trickling
in rivulets down a surface. Note that this “surface only” technique
would not support dripping effects, so it naturally complemented

Figure 8: We employed the thin film approach of [Stomakhin et al.
2019] to run high resolution FLIP simulations (voxel size ≲1 mm)
on characters’ surfaces to achieve believable dripping effects. The
bulk water surface (blue) was used to source and sink thin film
particles (green) for efficiency, limiting the simulation to areas of
visual significance. ©Disney and Wētā FX.

Figure 9: Different stages of our residual wetness approach: (a)
guide curves, (b) procedural rivulet animation, (c) meshed rivulets
and droplets, and (d) the final frame. ©Disney and Wētā FX.

our thin film solution described previously, as the latter had a harder
time keeping water droplets stuck to the surfaces or enforcing the
flow to adhere to the prescribed stream patterns.

We generated the distribution, shape, and movement of the out-
put in a deterministic manner. This allowed for an independent
evaluation of individual frames without relying on a full sequential
simulation. The HDA was run directly within Katana during ex-
pansion to the renderer, via HoudiniEngine. We picked a reference
frame from a shot, typically defaulting to the first frame, to use
when generating the patterns and curves, resulting in a contextual
registration of the action to the character.

We achieved the appearance of static coalesced surfaces by ad-
vecting an initially uniform distribution of points. We provided
120 instanced droplet exemplars to the renderer, which it often
instanced up to 10,000 times on a single character.

We created plausible dynamic rivulet patterns by first recursively
generating multiple octaves of guide curves over the surface. For
each octave we started with a distribution of initial points on the
surface. For each of those points, we walked down the surface,
creating a curve attracted to any previously created octaves within
its proximity. This attraction mimicked the behaviour of real-world
rivulets, which tend to favor existing paths of water when running
down a surface. We used textures from the surface to control where
the rivulet paths started, and where the paths could travel. This pro-
vided us with artistic controls to fit the appearance to the required
scenarios within shots. In shots requiring thin film simulations, we
used a thin film VDB surface from Loki to provide masking for the
reveal of the residual wetness appearance. Once we generated a
complete rivulet path, we assigned it a probability of moving, and
a random starting time. Given these variables we could determine
how far along the path the head of the rivulet was for the requested
frame. For each point on the path, we calculated the distance to
the head and used this as a lookup for the height of the trail in a
user-defined spline, with a maximum value of 0.4 cm.

To achieve a convincing contact angle, we tucked each point be-
low the surface by a distance of 0.4 cm minus the height. To create a
desired width of the rivulet, we duplicated the points and translated
them perpendicular to the curve direction. We then surfaced the
paths with Houdini’s spherical particle surfacing method, using a
point radius of 0.4 cm. To better integrate the resulting shapes, we
added the high-detail displacement from the underlying geometry
to the resulting mesh, when the height of the trail was low.

This method offers several improvements over previous textural
and shader-based techniques:

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA Stomakhin, A. et al

Figure 10: Using the wave curve approach of [Skrivan et al. 2020]
to create tiny surface-tension-driven ripples on top of our bulk fluid
surfaces. ©Disney and Wētā FX.

• Renders accurate caustics and shadows within and beyond
the droplets. This was particularly apparentwhen the droplets
would sit on a surface grazing with respect to the light.

• Preserves the appearance of the underlying materials.
• Avoids appearance filtering by generating rivulet mesh inde-
pendent of the camera, unlike texture-based approaches.

Capillary waves. Our bulk fluid solver captured details only at
scales larger than its voxel size, which would rarely go below 1 cm
for typical water tank scenarios. To restore the missing detail, we
utilized the approach of [Skrivan et al. 2020], which allows adding
tiny surface-tension-driven ripples to simulated water surfaces as
a post-process. We found this method to work well out of the box
with default settings (see Figure 10).

We discovered that in relatively calm water scenarios we could
bypass bulk water simulation altogether, and run the capillary wave
solver directly on top of the procedural ocean waves. In order to do
so we only needed to create a velocity field for wave curve emission.
We built the velocity field at each frame by taking the velocity field
of the procedural water waves and performing a divergence-free
projection on it in the presence of the collisions geometry. This gave
us plausible-looking wave curve distributions generated naturally
off of the colliders.

4.6 Secondaries
For bubbles and foam we used the approach of [Wretborn et al.
2022], which allows for two-way coupling between so called diffuse
bubble particles and the surrounding bulk water, with subsequent
seamless transition to SPH foam. The most common use case for
this method was to run it as a secondary simulation, re-simulating a

local region of the bulk water to guide the underwater bubbles, and
using the bulk water surface as an advection manifold for the foam.
For a few select shots where the bubbles’ influence on the bulk
water could not be ignored, such as the one shown in Figure 16, we
simulated bubbles and foam simultaneously with the other water
states, as indicated in Figure 6. The only required change for this
was to couple bubbles directly with the bulk water instead of a
sparsely allocated guided fluid.

Artist time spent doing secondary simulations often came down
to two processes: tuning emission criteria, and preparing inputs—
such as fluid surfaces and colliders—for simulation. Our focus lay
in finding standardized methods for these processes that could be
transferable to many different scenarios.

We addressed the first part—emission—with the aeration metric
and volume-based emission strategy proposed in [Wretborn et al.
2022], which creates physically plausible emission patterns from
bulk fluid simulations (⑤ in Figure 6). This covered the majority of
shots that required bubbles and foam secondaries. For areas outside
of the bulk fluid region, where aeration would not be available,
artists resorted to painting custom emission-density maps.

4.6.1 Preparing input. The main input that needed to be prepared
was the water SDF. For the vast majority of shots only a shallow
layer of bulk water was simulated, which would often not extend to
the depth to which bubbles can realistically travel. To avoid bubbles
constrained to the inside of the original bulk-water simulation do-
main, artists would often extend its SDF by iteratively transforming
it downwards and combining with itself. This process was cumber-
some and difficult, especially for simulation domains with complex
geometry. What is more, the domain cannot be expanded horizon-
tally this way, which severely limits the potential foam regions.
This was especially challenging for shots with trailing foam, such
as the one seen in Figure 11.

We solved this problem by using a composite representation
of the water surface. Seamless blending of the simulation water
region into the surrounding procedural ocean waves was already

Figure 11: Long trails of bubbles (blue) and foam (white), simulated
using our composite water surface representation. ©Disney and
Wētā FX.

Pahi: A Unified Water Pipeline and Toolset DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

Figure 12: Running a bubble and foam simulation on an implicit
composite surface. The bulk water SDF is shown as a transparent
surface (gray) around the moving object (red). As foam (green) and
bubbles (blue) reach the edge of the SDF they seamlessly transition
to being simulated using the implicit procedural open-ocean surface.
©Wētā FX.

an important part of our delivery from FX to rendering, which was
accomplished using Loki’s render graphs, such as the one shown in
Figure 3. We were able to utilize the output of the same compositing
graph for our secondaries simulations. The composite fluid surface
extends infinitely far in all directions, imposing no limitation on
the simulation region for bubbles or foam, and can be dynamically
sampled at any point in space, removing the burden of artists to
define the simulation region upfront. An example of this setup can
be seen in Figure 12.

4.6.2 Secondaries at different scales. A common challenge forwhite-
water systems is the ability to simulate scenarios on a wide variety
of scales. [Wretborn et al. 2022] established a set of dynamic param-
eters that produce compelling results for close-up scenarios, where
you can computationally afford realistic bubble radii 𝑟 in [1, 10] mm
range and voxel sizes of a few centimeters. As the camera gets fur-
ther away from bubble and foam action, it makes sense from both
rendering—no need to capture detail below screen pixel size—and
simulation cost standpoints to increase bubble particle sizes. Each
of the bigger particles can then be interpreted to represent an ag-
gregate of actual bubbles. As an aggregate has different dynamics
from an individual bubble of the same size, the parameters of the
original model needed to be readjusted. In what follows we describe
the details of that adjustment.

Particle size and guided volume voxel size. Since bubble particles
are the primary objects an artist sees, we devised a workflow where
they could specify the smallest feature size 𝐿 viewable in the scene.
They would then have the size of particles and voxel size set pro-
portional to the unitless length scale 𝑙 = 𝐿/1 mm, relative to what
those sizes would have been in the close-up setting of [Wretborn
et al. 2022]. Our simulations would typically have 𝑙 ∈ [1, 15].

Adjusting drag. The drag model of [Wretborn et al. 2022] was
designed for small individual bubbles submerged in a fluid; however
it is not valid for larger aggregates of bubbles. Assume a particle
with radius 𝑅 represents an aggregate of 𝑁𝑅 = (𝑅/𝑟)3 smaller
bubbles with radius 𝑟 , where 𝑅 = 𝑙𝑟 , and for simplicity assume
the drag force is linear with respect to bubble radii 𝐹 (𝑟) ∝ 𝑟 . The
underestimation of the drag force on the aggregate particle is then
proportional to

𝑁𝑅𝐹 (𝑟)
𝐹 (𝑅) =

𝑁𝑅𝑟

𝑅
=

(
𝑅

𝑟

)2
= 𝑙2, (20)

since it is in fact composed of 𝑁𝑅 smaller ones. We compensate for
the difference by adjusting the aggregate particle drag coefficient
by a factor of 𝑙2.

Adjusting cohesion and pressure. A similar argument to that of
the above was attempted for cohesion, however the resulting scal-
ing removed a lot of the interesting foam structures and looked
unsatisfactory. We found that as the particle sizes increased so
did their relative acceleration, due to cohesion, for the same SPH
settings. Thus, instead of correcting the cohesion strength, we em-
pirically found that increasing SPH pressure stiffness linearly with
𝑙 produced plausible results at larger scales.

4.7 Render delivery
We used Loki graphs, referred to as render graphs, to package simu-
lation outputs for rendering which could be used for visualization,
final renders within Manuka, or general sampling for further simu-
lation refinement. These render graphs are able to sample each Pahi
component at the original resolution, then blend them together,
with discrete inputs such as simulations, continuous inputs such as
open-ocean waves, and hybrid representations such as wave curve
displacement (see Figure 3). For a volume Loki builds and evaluates
a render graph as one would a shading graph per volume sample.
For example, sampling a VDB cache at a given position, combining
two samples into one based on their value and a mask, or projecting
the sample position onto an implicit surface. Deferring evaluation
of render graphs let Manuka adaptively choose where to sample
the water, and then per-sample load and blend all the required sim-
ulation components, thereby avoiding degradation of intermediate
discretizations into common domains. Render graphs also allowed
both FX and lighting artists to make updates post-simulation in
order to fine tune each water element—or even evaluate it outside
of a rendering environment—such as passing it back to animation
as a visualization guide for additional animation passes.

Similar to the simulation regimes, there was no single rendering
primitive which efficiently captured all the water visual require-
ments from large-scale oceans to small scale rivulets on characters
or misty splashes.Wemixed andmatched a suite of water primitives
depending on the outputs of the simulations and the needs of the
shot. Some water primitives represented solid water, or thin-wall
features such as bubbles, or even regions of heavily mixed air and
water such as foam or aeration, all requiring careful consideration
of what the behavior should be above and below an existing water
line, as seen in Figure 13.

Implicit Surfaces. The most general and also most widely used
render primitive was an SDF delivered to Manuka through the
ImplicitField RenderMan API. We sampled the implicit surfaces
using a custom Manuka procedural which evaluates a Loki render
graph per volume sample, to allow for blending of multiple inputs
without discretizing into a common domain. Each volume sample
consists of a sample position and a filter size, to avoid aliasing
when sampling more coarsely than the underlying data. We largely
generated the individual source inputs into the SDF render graph
before render time. They consisted of one of:

(1) Discretized level sets. Inputs such as bulk simulation par-
ticles, surfaced into an SDF and cached out as a VDB.

(2) Fully procedural inputs. Inputs such as open-ocean wave
height fields, created at render time through mathematical
transformations of the user parameters into an SDF.

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA Stomakhin, A. et al

Figure 13: The most common water rendering primitive and material combinations shown above and below the water line. The first three
from the left are all using an implicit surface rendering primitive with a spray (A), foam (B), and bubble (C) material. The next group in the
middle is rendered with particle primitives and can switch to isotrace on demand. The materials are spray (D), spray diffuse (E), foam (F),
foam diffuse (G), foam thinwall (H), bubbles (I), and bubbles diffuse (J). The final three are rendered with a volumetric rendering primitive
and a spray (K), foam (L), and aeration (M) material. ©Wētā FX.

(3) Hybrid discretized procedural inputs. Inputs such as
wave curves and volume instancing, using a mixture of an-
alytic components and pre-cached placements to generate
local signed distance fields.

We then blended together the individual inputs with composit-
ing operations in the render graph, by sampling each of them and
combining with constructive solid geometry (CSG) operators such
as union. Sometimes masks were required to guide where to ap-
ply the blend, for example to limit the blend between a simulated
splash and a procedural open-ocean SDF, to ensure the splash im-
pact would not be clipped by the ocean surface. The Loki render
graph communicates additional information to Manuka, such as the
bounds of the data, and the minimum feature size for a given area
in order to guide Manuka on where to sample, while still leaving
Manuka to make the final decision on sample locations and filter
sizes.

Particles. The next most common render primitive was particles
represented as RiPoints through the RenderMan API and delivered
through Loki compositing graphs. We used them for representing
small bubbles or water spray small enough to not need complex
geometric detail, but sparse and distinct enough that a volumetric
representation would be too diffuse. We cached out most particles
from FX simulations and then passed them through a Loki com-
positing graph at runtime in order to provide last-minute control,
such as culling by density, radius adjustment, or projecting to the
water surface.

Isotrace Primitives. The isotrace plugin to Manuka extends parti-
cles with additional attributes to represent several shapes analyti-
cally and provides efficient ways to directly trace against them. The
blobby isotrace shape was the most used and provided a way to
deliver particles without fully surfacing them while still represent-
ing a smooth connectivity between them, using the approach from
[Sabbadin and Droske 2021]. Blobbies were especially useful for the
intermediate spray state, separating from the bulk water but still
retaining some distinct shape before eventually becoming so sparse
that more simple small particles or a volumetric representation
would suffice.

Volumes. We also delivered density-based volumes through the
ImplicitField RenderMan API via a Loki render volume compositing

graph, often used to represent very aerated regions of water or
regions of fine mist.

Meshes. In limited cases, we used meshes when there was no
need for blending with other elements, while still requiring more
complex geometry than was available with particles or isotrace
primitives. These cases were mostly procedural and included the
residual wetness and rivulets attached to characters, or marine
snow to represent small floating bits of debris in the water.

5 PRODUCTION USE
During Avatar: The Way of Water production, the FX team was
tasked with bringing the magical water world of Pandora to life.
From complex reef villages to enormous characters leaping out
of the water, it had to be something the audience had never seen
before, yet also familar and grounded in physics. We will outline
some of of our workflows and production example cases below.

5.1 Kaita template
We utilized a proprietary Houdini template manager called Kaita
that allowed artists to load templates which included all the tools
and solvers required to run a given shot.

Kaita water templates included a wide range of tools/HDAs from
asset loading, procedural ocean spectra, simulation preparation,
bulk water simulation, bubble/foam secondary simulation, thin film
simulation to publishing and rendering, following the data flow
outlined in Figure 2.

Within these templates artists would have custom presets, such
as the thin film template where the highest quality used in pro-
duction was a voxel size of 0.6 mm and 20 substeps pre frame, and
the lowest quality was a voxel size of 0.1 cm and 10 substeps per
frame. For Loki state machine simulations the standard delivery
resolution was a voxel size of 5 cmwith 5 substeps per frame, giving
great resolution and detail, while also keeping the simulation times
reasonable.

Utilizing the Kaita template structure enabled artists to work
through a large number of shots of varying complexity, while also
ensuring consistency. For efficiency there was a predefined struc-
ture to the templates, which enabled senior artists, leads, and su-
pervisors to efficiently triage and debug scenes without having to
decipher custom scene files or unique workflows per artist. There

Pahi: A Unified Water Pipeline and Toolset DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

Figure 14: This shot of Payakan and Lo’ak playing together in the
water was completed in a single simulation pass using Loki state
machine for bulk water (blue), spray (green), mist (red) and air (not
visualized). The bubbles and foam, and thin film simulations were
performed in separate passes. ©Disney and Wētā FX.

were weekly development round tables where any innovation or
improvement could be discussed, consumed, and deployed into the
templates for wider use.

5.2 Large scale splashes
One of the challenges the Simulation and FX teams faced during
production was water at large scales. Lo’ak meeting the 28 m tulkun
Payakan is a great example that presented significant challenges
(see Figure 14). With Payakan being roughly the size of a blue
whale, getting believable interaction and splashes at this scale was
paramount. We approached this as a single state machine solve,
with fully coupled water, spray, and mist; for thin film, bubbles, and
foam we used directional coupling. “Directional coupling” is what
we refer to when reusing physics data from the primary solve, such
as velocity fields, air solves, or anything useful in additional solves.
By using this technique we were able to integrate these varying
elements into the same physical world, where large splashes, spray,
and mist react with the main body of water, producing aeration,
bubbles, and foam.

Where required we also used directional coupling to provide
additional “sweetener” passes, allowing us to hit specific creative
notes from the director. Taking the solved underlying bulk water,
we could run a secondary solve, with some slight modifications to
transition behaviors, such as how quickly we wanted to transition
into spray and/or mist, or even transition straight from bulk water
to mist if it met certain criteria. The simulation time for the final
primary solve was 18 hours on a single 512 GBmachine, and 6 hours

per secondary directionally coupled element, at a voxel resolution
of 5 cm and 2 substeps per frame.

While the Loki statemachine had already been used on numerous
shots of varying scales at this stage in the project, we had not yet
approached something this large. Once we found the right settings,
we could deploy this recipe on other Payakan jumping shots or
shots of a similar scale. Within this framework, we needed relatively
few iterations per shot before showing to the client for creative
approval.

To achieve the final rendered look, we surfaced the bulk water
with our anisotropic surfacer with aeration roughening: a technique
to thin out areas where transition occurs by scaling down the sizes
of splatted ellipsoids. The ballistic deliverables were blobbies (spray),
points (particulate mist), and volumes (volumetric mist). A balanced
combination of all these deliverables allowed us to achieve the
smooth transition through the water states.

5.3 Underwater bubbles
We were tasked with creating numerous above and below water
scenarios, and in some cases, a mixture of both. For underwater
shots or shots at the waterline, the entrainment of air in water was a
key component to selling realisim. A typical recipe for underwater
shots would usually include aeration volumes to create the smallest
diffuse bubbles (discussed in Section 4.6), and high-fidelity hero bub-
bles: a term we used to describe large volumes of air trapped under
water with explosive dynamics, where capturing the evolution of
the air-water interface was essential. We followed the approach
of [Stomakhin et al. 2020] to simulate the latter (see Figure 15). In
some scenarios hero bubbles were required to break the surface
and pop. For these shots, we simulated the hero bubbles first, and
then used them as guide velocity fields or collision inputs for the
subsequent bulk-water simulation.

[Stomakhin et al. 2020] shows that it is possible to have hero and
diffuse bubbles coexist with a single simulation. However, we found
this approach difficult to use in practice since similar sized hero and
diffuse bubbles can have different apparent dynamics. As a result,
for scenarios where both diffuse and hero bubbles were present
(see Figure 16), we simulated the representations separately.

To avoid rendering diffuse bubbles as perfect spheres, we fol-
lowed [Patkar et al. 2013] and instanced evolving shapes onto the
diffuse bubble particles. For hero bubbles we surfaced the air FLIP

Figure 15: The release of large volumes of air under water, sim-
ulated using the hero bubble approach of [Stomakhin et al. 2020].
©Disney.

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA Stomakhin, A. et al

particles with our anisotropic surfacer and rendered the resulting
SDF.

6 LESSONS AND LIMITATIONS
When developing a large water system, one inevitably has to make
difficult design decisions and compromises, as different production
requirements are at odds with one another, such as art-directability
versus physicality. With a development cycle of multiple years, like
that of the massive VFX production of Avatar: The Way of Water,
it is often hard to predict how these choices will hold up in the
long run. We now summarize the compromises we made when
designing Pahi, and discuss how those have worked out in practice.

Physics vs artistic control. Despite longer simulation times, we
chose physics-based workflows to help reduce artist iterations. This
helped achieve the most consistent look and quality of the results
across a large number of TDs. This came at a cost of willfully
constraining ourselves to less flexible or art-directable setups, com-
pared to other systems, such as SideFX Houdini by default. For
example, several heavily art-directed shots required senior artists
to stray away from the primary workflow to do one-off setups. But
we found the overall trade-off a major win.

Coupling vs directional simulation. Accurate coupling, such as
bubbles in water or airborne spray in air, allowed us to achieve
unprecedented visual results. At the same time, having sequential
simulations with directional interaction was important for faster
turnaround times with the ability to address notes on individual
components. For example, we sometimes ran foam and bubbles as a
secondary simulation, even though our system was capable of full
coupling with the rest of the state machine. We found it valuable
to have multiple coupling approaches at hand; this gave the artists
the flexibility to choose the most optimal method depending on the
requirements of the shot.

Single vs multi-state representation. A single water representation
seems desirable from a physical-accuracy and reduced-management-
complexity standpoint. However, that would be far from practical
computationally. On the other hand, separate representations for
different water states can be optimized accordingly, but then the
interaction between them becomes a challenge both from simula-
tion (coupling and transitions) and rendering (different scales and
shading) perspectives. Our solution was a compromise, where we
managed a few distinct water states, but tried to not have unnec-
essary ones. We used the Loki state machine to handle the states
we chose, ensuring seamless momentum-conserving transitions.
We applied a similar approach to rendering deliverables, using a
variety of primitives to best fit each specific use case rather than
one approach for all types of water. The Loki render graphs allowed
for drastic differences in the simulation resolutions and a consistent
system to manage the mapping of simulation outputs to rendering
primitives.

7 CONCLUSION
Avatar: TheWay of Water’s ambitious development pushed the state
of the art for many aspects of water. Rather than prescribing a one-
size-fits-all solution, a new cross-department workflow facilitated
development, experimentation, and artist flexibility while ensuring

Figure 16: This shot of characters diving into water was completed
using a combination of diffuse (cyan) and hero (blue) bubbles each
coupled with the surrounding water. ©Disney and Wētā FX.

the large suite of components seamlessly integrated back into a
cohesive whole.

ACKNOWLEDGMENTS
We are thankful to the many people besides the authors of this
article who contributed to Pahi and the varied water components.
We thank the Simulation Research department, including John
Edholm, Noh-hoon Lee, Nikolay Ilinov, and Marcus Schoo who
developed major pieces of Loki fluid simulation, surfacing, and ren-
der delivery functionality. Eston Schweickart, Xiao Zhai, and Gilles
Daviet brought fluid and elastic dynamics together for wet character
simulations. Andrew Moffat, Job Guidos, and Tim Ebling bridged
simulation research and FX production. Andrew Sidwell, Martin
Loga, and Christopher Horvath developed much of the procedural
open ocean wave deformer library. Tomas Skrivan and Christoph
Sprenger provided wave curve and shallow water solvers. Marc
Droske, Manuele Sabbadin, Tomas Davidovic, Andrea Weidlich
advanced the fundamental rendering of water.

We thank the FX department for the varied artistic, technical,
and leadership contributions. Gary Boyle designed much of the
original Pahi framework and API. Chet Leavai was key in early
water development and implicit rendering workflows. Christos
Parliaros pushed the animation FX and creature fluid coupling
workflows. Katie Talbot, Steffanie Blatt, Vitto Maglione, and Ziggy
Kucas led major Loki solver testing during development. James
Robinson, Robert Wilkins, Tanē MacDonald, Shreyas Sood, Jackson
Preston, Brock Trewavas, Lucy Jaegers, Sandy Sutherland, and
Alexander Jarosch contributed to Pahi during production. Thank
you to Alex Nowotny, David Caeiro Cebrian and David Morton,
Eddy Purnomo, Boris Bruchhaus, Brandon Fleet, Ryan Bowden,
Anthony Arnoux for their FX Leadership for water simulations in
production.

Pahi: A Unified Water Pipeline and Toolset DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

Joe Churchill, Guillaume Francois, and Chris George led major
water lookdev work. John Homer, Andrea Merlo, Carlos Lin, Matt
Muntean, and Tim Hawker adopted fluid simulations into their
creatures workflows. Alex Klaricich developed much of the lighting
workflow managing all the varied water deliveries. Louis-Daniel
Poulin was instrumental getting the residual wetness system off the
ground. Sam Cole’s leadership in compositing smoothly brought
together thousands of people’s work.

Thank you to James Cameron and Jon Landau whose vision
pushed forward the entire VFX industry, especially around wa-
ter. Many of the visual effects supervisors, especially Pavani Rao
Boddapati, Eric Saindon, Nick Epstein, and Chris White, provided
multiple years of invaluable feedback. And finally, thank you to Joe
Letteri who gave us the time, resources, and tireless guidance to
deliver a more holistic and physically principled production water
system.

REFERENCES
Christopher Batty and Robert Bridson. 2008. Accurate Viscous Free Surfaces for

Buckling, Coiling, and Rotating Liquids. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Dublin, Ireland) (SCA
’08). Eurographics Association, Goslar, DEU, 219–228.

Robert Bridson. 2015. Fluid simulation for computer graphics. CRC press.
G. Daviet and F. Bertails-Descoubes. 2017. Simulation of Drucker–Prager granular

flows inside Newtonian fluids. (Feb. 2017). Working paper or preprint.
Luc Deike, W Kendall Melville, and Stéphane Popinet. 2016. Air entrainment and

bubble statistics in breaking waves. J. Fluid Mech. 801 (Aug. 2016), 91–129.
Luca Fascione, Johannes Hanika, Mark Leone, Marc Droske, Jorge Schwarzhaupt,

Tomáš Davidovič, Andrea Weidlich, and Johannes Meng. 2018. Manuka: A Batch-
Shading Architecture for Spectral Path Tracing in Movie Production. ACM Trans.
Graph. 37, 3, Article 31 (aug 2018), 18 pages. https://doi.org/10.1145/3182161

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey.
2016. Narrow Band FLIP for Liquid Simulations. In Proceedings of the 37th Annual
Conference of the European Association for Computer Graphics (Lisbon, Portugal)
(EG ’16). Eurographics Association, Goslar, DEU, 225–232.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A
Polynomial Particle-in-Cell Method. ACM Trans. Graph. 36, 6, Article 222 (nov
2017), 12 pages. https://doi.org/10.1145/3130800.3130878

Jonathan Garcia, Sara Drakeley, Sean Palmer, Erin Ramos, David Hutchins, Ralf Habel,
and Alexey Stomakhin. 2016. Rigging the Oceans of Disney’s "Moana". In SIGGRAPH
ASIA 2016 Technical Briefs (Macau) (SA ’16). Association for Computing Machinery,
New York, NY, USA, Article 30, 4 pages. https://doi.org/10.1145/3005358.3005379

Christopher J. Horvath. 2015. Empirical Directional Wave Spectra for Computer
Graphics (DigiPro ’15). Association for Computing Machinery, New York, NY, USA,
29–39. https://doi.org/10.1145/2791261.2791267

Richard Jones and Richard Southern. 2017. Physically-Based Droplet Interaction (SCA
’17). Association for Computing Machinery, New York, NY, USA, Article 5, 10 pages.
https://doi.org/10.1145/3099564.3099573

Steve Lesser, Alexey Stomakhin, Gilles Daviet, Joel Wretborn, John Edholm, Noh-Hoon
Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and Andrew Moffat. 2022. Loki: A
Unified Multiphysics Simulation Framework for Production. ACM Trans. Graph.
41, 4, Article 50 (jul 2022), 20 pages. https://doi.org/10.1145/3528223.3530058

Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology.
ACM Trans. Graph. 32, 3, Article 27 (jul 2013), 22 pages. https://doi.org/10.1145/
2487228.2487235

Sean Palmer, Jonathan Garcia, Sara Drakeley, Patrick Kelly, and Ralf Habel. 2017. The
Ocean and Water Pipeline of Disney’s Moana. In ACM SIGGRAPH 2017 Talks (Los
Angeles, California) (SIGGRAPH ’17). Association for Computing Machinery, New
York, NY, USA, Article 29, 2 pages. https://doi.org/10.1145/3084363.3085067

Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A
hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics. In
Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Anaheim, California) (SCA ’13). Association for Computing Machinery,
New York, NY, USA, 105–114.

Manuele Sabbadin and Marc Droske. 2021. Ray Tracing of Blobbies. Apress, Berkeley,
CA, 551–568. https://doi.org/10.1007/978-1-4842-7185-8_35

Tomas Skrivan, Andreas Soderstrom, John Johansson, Christoph Sprenger, KenMuseth,
and Chris Wojtan. 2020. Wave Curves: Simulating Lagrangian Water Waves on
Dynamically Deforming Surfaces. ACM Trans. Graph. 39, 4, Article 65 (aug 2020),
12 pages. https://doi.org/10.1145/3386569.3392466

Alexey Stomakhin, Andrew Moffat, and Gary Boyle. 2019. A Practical Guide to Thin
Film and Drips Simulation. In ACM SIGGRAPH 2019 Talks (Los Angeles, California)
(SIGGRAPH ’19). Association for ComputingMachinery, New York, NY, USA, Article
72, 2 pages. https://doi.org/10.1145/3306307.3328141

Alexey Stomakhin and Andrew Selle. 2017. Fluxed Animated Boundary Method. ACM
Trans. Graph. 36, 4, Article 68 (jul 2017), 8 pages. https://doi.org/10.1145/3072959.
3073597

Alexey Stomakhin, Joel Wretborn, Kevin Blom, and Gilles Daviet. 2020. Underwater
Bubbles and Coupling. In ACM SIGGRAPH 2020 Talks (Virtual Event, USA) (SIG-
GRAPH ’20). Association for Computing Machinery, New York, NY, USA, Article 2,
2 pages. https://doi.org/10.1145/3388767.3407390

Joel Wretborn, Sean Flynn, and Alexey Stomakhin. 2022. Guided Bubbles and Wet
Foam for Realistic Whitewater Simulation. ACM Trans. Graph. 41, 4, Article 117
(jul 2022), 16 pages. https://doi.org/10.1145/3528223.3530059

Jihun Yu and Greg Turk. 2013. Reconstructing Surfaces of Particle-Based Fluids
Using Anisotropic Kernels. ACM Trans. Graph. 32, 1, Article 5 (feb 2013), 12 pages.
https://doi.org/10.1145/2421636.2421641

A SPLITTING REPARAMETERIZATION
The average volume of a particle produced by sampling the radius
distribution (1) is

𝑉 =

∫ 𝑟max

𝑟min

4
3
𝜋𝑟3Π(𝑟)𝑑𝑟 = 𝐴

4 − 𝜂

(
𝑟
4−𝜂
max − 𝑟

4−𝜂
min

) 4
3
𝜋, (21)

where the normalization constant 𝐴 can be found from
1
𝐴

=

∫ 𝑟max

𝑟min

1
𝑟𝜂

𝑑𝑟 =
1

1 − 𝜂

(
𝑟
1−𝜂
max − 𝑟

1−𝜂
min

)
. (22)

If 𝑘 is the total number of emitted split particles, their total
expected volume is 𝑘𝑉 , which we would like to be equal to the
volume of the parent particle 𝑉parent = 4

3𝜋𝑟
3
parent. From that

𝑉parent

𝑘
=

4
3
𝜋
1 − 𝜂

4 − 𝜂

𝑟
4−𝜂
max − 𝑟

4−𝜂
min

𝑟
1−𝜂
max − 𝑟

1−𝜂
min

, (23)

and substituting 𝑟max = 𝜉𝑟min we get

𝑟3min =
𝑟3parent

𝑘

4 − 𝜂

1 − 𝜂

𝜉1−𝜂 − 1
𝜉4−𝜂 − 1

. (24)

https://doi.org/10.1145/3182161
https://doi.org/10.1145/3130800.3130878
https://doi.org/10.1145/3005358.3005379
https://doi.org/10.1145/2791261.2791267
https://doi.org/10.1145/3099564.3099573
https://doi.org/10.1145/3528223.3530058
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/3084363.3085067
https://doi.org/10.1007/978-1-4842-7185-8_35
https://doi.org/10.1145/3386569.3392466
https://doi.org/10.1145/3306307.3328141
https://doi.org/10.1145/3072959.3073597
https://doi.org/10.1145/3072959.3073597
https://doi.org/10.1145/3388767.3407390
https://doi.org/10.1145/3528223.3530059
https://doi.org/10.1145/2421636.2421641

	Abstract
	1 Introduction
	2 Previous work
	3 Architecture overview
	3.1 Common input
	3.2 Flexible simulation
	3.3 Renderables

	4 Pahi components
	4.1 Bulk water
	4.2 Loki state machine
	4.3 Anisotropic surfacing
	4.4 Thin film and drips
	4.5 Adding details to surfaces
	4.6 Secondaries
	4.7 Render delivery

	5 Production use
	5.1 Kaita template
	5.2 Large scale splashes
	5.3 Underwater bubbles

	6 Lessons and limitations
	7 Conclusion
	Acknowledgments
	References
	A Splitting reparameterization

