
Loki: A Unified Multiphysics Simulation Framework for Production
STEVE LESSER, ALEXEY STOMAKHIN, GILLES DAVIET⋆, JOEL WRETBORN, JOHN EDHOLM,
NOH-HOON LEE, ESTON SCHWEICKART, XIAO ZHAI, SEAN FLYNN, and ANDREW MOFFAT,
Weta Digital, New Zealand

We introduce Loki, a new framework for robust simulation of fluid, rigid, and

deformable objects with non-compromising fidelity on any single element,

and capabilities for coupling and representation transitions across multiple

elements. Loki adapts multiple best-in-class solvers into a unified framework

driven by a declarative state machine where users declare ‘what’ is simulated

but not ‘when,’ so an automatic scheduling system takes care of mixing any

combination of objects. This leads to intuitive setups for coupled simulations

such as hair in the wind or objects transitioning from one representation

to another, for example bulk water FLIP particles to SPH spray particles to

volumetric mist. We also provide a consistent treatment for components

used in several domains, such as unified collision and attachment constraints

across 1D, 2D, 3D deforming and rigid objects. Distribution over MPI, custom

linear equation solvers, and aggressive application of sparse techniques keep

performance within production requirements. We demonstrate a variety

of solvers within the framework and their interactions, including FLIP-

style liquids, spatially adaptive volumetric fluids, SPH, MPM, and mesh-

based solids, including but not limited to discrete elastic rods, elastons, and

FEM with state-of-the-art constitutive models. Our framework has proven

powerful and intuitive enough for voluntary artist adoption and has delivered

creature and FX simulations for multiple major movie productions in the

preceding four years.

CCS Concepts: • Computing methodologies → Physical simulation;
Simulation types and techniques.

Additional Key Words and Phrases: unified physics, coupling, movie produc-

tion, distributed simulation

ACM Reference Format:
Steve Lesser, Alexey Stomakhin, Gilles Daviet

⋆
, Joel Wretborn, John Ed-

holm, Noh-hoon Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and An-

drew Moffat. 2022. Loki: A Unified Multiphysics Simulation Framework

for Production. ACM Trans. Graph. 41, 4, Article 50 (July 2022), 20 pages.

https://doi.org/10.1145/3528223.3530058

1 INTRODUCTION
In the last few decades computer graphics researchers have devel-

oped a vast variety of techniques to simulate different kinds of

physical phenomena. The focus has largely been on tuning each of

⋆
Gilles Daviet is currently affiliated with NVIDIA.

All images ©Wētā FX.

Authors’ address: Steve Lesser, slesser@wetafx.co.nz, Alexey Stomakhin, st.alexey@

gmail.com, Gilles Daviet
⋆
, gdaviet@nvidia.com, Joel Wretborn, jwretborn@wetafx.

co.nz, John Edholm, jedholm@wetafx.co.nz, Noh-hoon Lee, nlee@wetafx.co.nz,

Eston Schweickart, eschweickart@wetafx.co.nz, Xiao Zhai, xzhai@wetafx.co.nz,

Sean Flynn, sflynn@wetafx.co.nz, Andrew Moffat, amoffat@wetafx.co.nz, Weta Digital,

New Zealand.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2022/7-ART50 $15.00

https://doi.org/10.1145/3528223.3530058

Fig. 1. Explosion. An explosion simulation performed using our adaptive
Eulerian fluid solver. The image also shows the underlying Bucket topology:
finer Buckets in the vicinity of the explosion, with gradual coarsening away
from it to ensure enough world-space padding for capturing the surrounding
air flow. Each Bucket represents an 8 × 8 × 8 block of voxels for material
channels, and a 4 × 4 × 4 block of voxels for velocity and pressure channels.
©Wētā FX.

these techniques to the specific needs of particular solvers, resulting

in efficient specialized data structures, discretizations, integration

schemes, and other distinct components of a solver. Coupling has

always been a challenging task, as bringing together different and

potentially incompatible solvers is non-trivial. Attempts to achieve

coupling typically result in compromises which limit quality for

individual elements compared to specialized solvers, or target strong

coupling for a few selected phenomena and are not easily extensible.

In order for a solver to efficiently ‘talk’ to any other solver, they

each must adopt a set of shared rules in regard to integration, dis-

cretization, and scheduling. Defining and enforcing those shared

rules can lead to a loss in performance or flexibility of the individual

components if chosen too strictly, or they can lead to limited ability

to interact if defined too loosely.

We present Loki, the first system targeting visual effects produc-

tion to codify those rules, implement a large collection of solvers

within those rules, and achieve a level and flexibility of interaction

between different simulated physical systems that has not been

demonstrated before. Importantly, Loki avoids the combinatorial

complexity explosion of both backend accurate coupling and fron-

tend configuration previously seen from mixing many solvers to-

gether, making coupling tractable for production. To manage per-

formance, we include support for distributed simulations all the

way down to the core data structures, and introduce several new

specialized linear equation solvers for different types of linear sys-

tems commonly encountered in visual effects. This paper includes

descriptions of the various algorithms and unifying components

Loki uses, with emphasis on the overall architecture.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

HTTPS://ORCID.ORG/0000-0001-8059-036X
HTTPS://ORCID.ORG/0000-0002-5081-9108
HTTPS://ORCID.ORG/0000-0002-6375-4315
HTTPS://ORCID.ORG/0000-0003-1389-7286
HTTPS://ORCID.ORG/0000-0002-1126-7419
HTTPS://ORCID.ORG/0000-0002-1126-7419
HTTPS://ORCID.ORG/0000-0001-6697-9870
HTTPS://ORCID.ORG/0000-0001-8964-3704
HTTPS://ORCID.ORG/0000-0002-1082-9459
HTTPS://ORCID.ORG/0000-0001-7050-7446
https://doi.org/10.1145/3528223.3530058
https://orcid.org/0000-0001-8059-036X
https://orcid.org/0000-0002-5081-9108
https://orcid.org/0000-0002-6375-4315
https://orcid.org/0000-0003-1389-7286
https://orcid.org/0000-0002-1126-7419
https://orcid.org/0000-0001-6697-9870
https://orcid.org/0000-0001-8964-3704
https://orcid.org/0000-0002-1082-9459
https://orcid.org/0000-0001-7050-7446
https://doi.org/10.1145/3528223.3530058

50:2 • Lesser, S. et al

Fig. 2. Interacting solids and swimming character. Coupling between
1D, 2D, and 3D elastic solids (left) and a diver scene that demonstrates the
simulation of free-surface fluids, elastic solids, and the coupling in between
(right). Both simulations use the same user-facing Solver Setup. ©Wētā FX.

After reviewing related works in Section 2, we cover high-level

goals, constraints, and resulting design principles in Section 3. We

examine the user-facing architecture in Section 4, the developer-

facing architecture in Section 5, and the shared solver components

in Section 6. Several simulation case studies are covered in Section 7

to demonstrate flexibility of the system. Finally, we conclude with a

discussion of strengths, limitations, and future work in Section 8.

2 RELATED WORKS
We limit our review to prior work targeting multiple phenomena for

physics-based animation rather than systems targeting a single use

case. We believe this highlights how a new architecture is needed

to allow both best-in-class individual solvers and combinations of

solvers that coexist in a single system to achieve production goals.

We refer to methods using a single representation for simulations in

multiple domains as multiphysics methods, and we refer to systems

combining multiple representations for simulations as multiphysics

frameworks.

2.1 Multiphysics methods
Position based dynamics [Macklin et al. 2016; Müller et al. 2007] is

a popular choice for production soft body simulation as seen in

Maya’s Nucleus [Stam 2009], NVIDIA PhysX [Macklin et al. 2019],

or Houdini’s Vellum solvers. While fluids are supported [Macklin

and Müller 2013; Yang et al. 2015], they are not as performant and

scalable as Eulerian grid-based implementations [Fedkiw et al. 2001;

Zhu and Bridson 2005]. Convergence is also strongly affected by

discretization, slowing down for deep constraint hierarchies.

Elastons [Martin et al. 2010] offer a unified approach across di-

mensions for mesh-based objects, at the cost of a high overhead

over reduced models for thin objects and fluids, and also the lack of

an Eulerian representation.

Material point method [Jiang et al. 2016] offers excellent fidelity

for some complex materials such as sand [Daviet and Bertails-

Descoubes 2016; Klár et al. 2016] and snow [Stomakhin et al. 2013],

phase transitions [Stomakhin et al. 2014], and has been extended to

support simulation of codimensional elastic solids such as hair and

cloth [Jiang et al. 2017]. However, grid resolution limitations for

collisions and performance drawbacks make it difficult to compete

with dedicated elastic FEM approaches or FLIP for inviscid water.

2.2 Multiphysics frameworks
Black box weak coupling is a technique for coupling multiple solvers

by alternately isolating each solver and stepping it forward using the

results from the other solvers as fixed inputs, e.g. [Akbay et al. 2018;

Guendelman et al. 2005]. This allows somemutual interaction across

the solvers in the result, but there is no reuse of shared components

across the solvers; and given that the coupling scheme is rarely

run to convergence, there are limitations for how accurate those

interactions can be, in particular regardingmomentum conservation.

This concept is often extended to directional simulations in movie

production, where one solver runs only after the earlier solver has

completely finished; so there is only one-way interaction.

Monolithic approaches, such as [Brandt et al. 2019; Fei et al. 2018,

2017; Losasso et al. 2006; Lyu et al. 2021; Robinson-Mosher et al. 2008;

Takahashi and Batty 2020, 2021; Teng et al. 2016] at the opposite

end of the spectrum, propose a specialized solver targeting a partic-

ular set of phenomena. Their strength lies in strong convergence

properties, but their lack of flexibility makes them unsuitable for the

development of a comprehensive and extensible multiphysics frame-

work. [Losasso et al. 2008; Patkar et al. 2013] explore transitions

between different representation within a monolithic system.

Node graphs are a common approach to exposing an interface

for developing solvers, using small building blocks representing

execution kernels in a dependency; they are popular in visual ef-

fects software such as SideFX’s Houdini as a way to package solvers.

Their generality facilitates creativity and ease of experimentation

for developers to try out new ideas and design new solvers. However

the accompanying creative chaos can hinder productivity when one

tries to assemble a solid production system, with well-established

components that need to reliably interact with one another in any

combination. For instance, there is essentially one way to assemble

a FLIP solver, and one way to do strong coupling correctly. But none

of that structure is enforced, and the ‘proper’ ways of doing multi-

physics are easy to miss by technical artists and even experienced

researchers amidst the ocean of possibilities those systems offer,

especially as the number of phenomena increases.

Multiphysics C++ libraries such as PhysBAM [Dubey et al. 2011],

SOFA [Faure et al. 2012], or Chrono [Tasora et al. 2016] contain

solvers for simulating various phenomena such as deformable and

rigid bodies, compressible and incompressible fluids, fracture, fire,

Fig. 3. Waterfall. A waterfall simulation demonstrating coupling between
a FLIP fluid (right) and an Eulerian wind field (left). ©Wētā FX.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:3

hair, cloth, muscles, and more. Shared data structures, generic inter-

faces, and powerful linear algebra routines allow for fast prototyping

and design of new custom simulation drivers and integrators, which

can be used for coupling multiple phenomena. However, the main

target audience for such libraries are simulation researchers and

engineers; and the complexities of setting up new multiphysics

simulations make them out of reach for most VFX artists.

Domain specific languages (DSL), such as [Bernstein et al. 2016;

Hu et al. 2019; Kjolstad et al. 2016], offer useful abstraction layers

allowing developers to focus on physics and algorithms while avoid-

ing dealing with specifics of parallel/distributed implementations

on heterogeneous architectures.

3 THE ARCHITECTURE
Wepropose several goals and constraints for a simulation framework

to be used by technical artists on a wide range of phenomena for

movie production.

(1) Quality. Any single element including free-surface liquids,

volumetric fluids, and rigid and deforming solids, can be sim-

ulated with the same quality as with a specialized solver. In

particular, we aim to reproduce real-world results for use in

photoreal visual effects.

(2) Interactions. Multiple elements can interact with each other

in any combination including coupled, one-way coupled in

any direction, and solved independently with no interactions.

(3) Performance. Simulations are interactive enough to set up

on a single workstation, and performant enough to complete

overnight on one or more machines for final quality photoreal

results.

(4) Usability. Technical artists from junior to senior level, without

deep knowledge of how to build solvers, can set up and com-

plete simulations with enough controls to address creative

feedback.

(5) Reusable. Features should be reusablewherever possible across
solvers.

(6) Hardware. Machines running simulations will have many

CPU cores, but may not have a GPU. Multiple machines may

be available for large simulations.

There are currently no multiphysics methods that are able to

handle all of the types of simulation that we require without a

loss in quality. Furthermore, existing multiphysics frameworks lack

fidelity, scale poorly with complexity, or lack the usability needed

for artist tools. Therefore we have developed a new simulation

framework called Loki to better meet both our backend and frontend

requirements.

3.1 Design Principles
Our simulation framework’s goals and constraints led us to define

several design principles to stay true to the requirements in both

the user facing controls and the backend architecture:

(1) Best-in-Class. If there is a high-fidelity techniquewidely shown
to be best for a particular phenomenonwe should favor includ-

ing that technique in the framework rather than competing

against it.

(2) Configuration Scales with Phenomena. The complexity of the

user-facing configuration should scale linearly with the num-

ber of phenomena represented, not the number of objects

being simulated.

(3) Avoid Combinatorial Explosion.When building a unified frame-

work over many components, we should avoid needing to

write a specialized coupling scheme between any two ele-

ments. For instance considering hair, solid, water, and gas,

that would mean coupling hair with solids, hair with water,

solids with water, hair with gas, solids with gas, water with

gas, or more generally for nmodels, n(n−1)/2 coupling terms.

Instead, we should devise abstractions that each model can

follow to receive automatic coupling capabilities, keeping the

implementation complexity to a minimum.

(4) Sparse Parameters. Parameters should have reasonable de-

faults and can be set sparsely at whatever granularity is re-

quired, such as constant across all objects, constant for a

single object, or varying across vertices. If there is a conflict

between parameters set for multiple granularities, then the

more local parameter with the narrowest scope is used.

(5) Physical by Default. Default solver settings should prefer the

most physically correct behavior available. As such, we should

consistently use physical units, such as [kg/m
3
] for volumet-

ric mass, and validate against measured results. In a produc-

tion context there are often cases where artistic vision should

override physical correctness, so we should also provide non-

physical tools to tweak the results of a simulation; but these

options should be disabled by default.

(6) Locality of Computation. All algorithms should require only

local neighborhood access instead of global access. This is in

line with locality of differential operators used in continuum

mechanics and the observation that the strength of many

physical interactions decreases sharply with distance. This

is particularly important for dividing work both locally and

across multiple machines, where each unit of work may only

have efficient access to a subset of the full simulation data.

In cases where this is not possible, such as with long-range

attachment between elements across the whole domain, or

large rigid bodies inside a high-resolution fluid, we should

provide overrides, at the cost of potentially increased com-

munication overhead.

Although sometimes more aspirational than strict, these guide-

lines influence decisions around which solvers to incorporate, what

parameter space to expose, and how to structure the user work-

flow into the complete system we call Loki. Our system integrates

multiple traditional solvers into a unified distributed simulation

framework driven by a declarative configuration proficient at high

fidelity simulations involving single elements, coupling multiple

elements, and transitioning between representations.

4 USER-FACING DESIGN
We will now examine the user-facing architectural elements of Loki,

including the solver configuration and data flow, to understand

how artists work with Loki. As we progress, we will define a num-

ber of Loki-specific terms; definitions for these are summarized in

Section 11.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:4 • Lesser, S. et al

4.1 Declarative Configuration
The first major user-facing component of the architecture is the

method of describing the behavior of a simulation, such as ‘simulate

curves as discrete elastic rods [Bergou et al. 2010, 2008] which are

coupled via drag to an incompressible volumetric wind which exists

in a narrow band around the curves’ shown in Figure 4. Loki uses

a declarative configuration called a Solver Setup to describe what

should happen within the simulation consisting of a tree of nodes.

There are two kinds of nodes: Behaviors and Groups. Behaviors are

leaf-level nodes that describe a high-level unit of computation such

as adding an object into the scene or operating on an existing object.

Groups are intermediate-level nodes that are used for organization

and scoping in the Solver Setup tree; they may contain Behaviors or

other Groups. Figure 5 shows a Solver Setup used to describe hair

in the wind which we will use as an example to walk through the

general Solver Setup rules.

Groups collect related functionality to describe a high-level el-

ement in the scene, with the convention that each Group should

describe a fully working solver for at least one element. If the Wind

Group is disabled, there is still a fully functioning hair solver via the

Hair Group and vice versa. Groups also provide scope for behaviors

to control their influence on the current subtree; for example in

Figure 5 the Pressure Material, enforcing incompressibility, applies

to the Volume Object but not the Curves Object, while the Gravity

Force applies to both the Curves Object and the Volume Object.

Behaviors may schedule multiple types of work during solver

execution, such as the Volume Object handling emission, advection,

and adaptivity criteria. Parameters on each behavior are used to

control settings for how something is simulated; but in keeping

with the Sparse Parameters principle, the default values are usually

reasonable for physically based results, and they can be overridden

at the behavior level or be fine tuned at the data level, such as with

painted overrides. Following the Configuration Scales with Phenom-

ena principle, Behaviors generally depend on data to flow in from

the outside to define what is simulated, such as the Curves Object

using an input data stream to describe which curves to simulate in-

stead of building the curves directly by parameters on the Behavior.

The exceptions are the Behaviors related to fluid particle emission,

as they need to properly respect the notion of volumetric flux.

The Solver Setup does not require the user to describe any ex-

ecution order across the Behaviors, since everything is scheduled

Fig. 4. An example scene for simulating hair and wind coupled through
buoyancy and drag forces. ©Wētā FX.

Root Group

Hair Group

Curves Object

Stretching Constraint

Bending Constraint

Attachment Constraint

Collision Constraint

Wind Group

Volume Object

Pressure Material

Boundary Constraint

Gravity Force

Coupled Buoyancy

Coupled Drag Force

Adds curves to the system

Curves resist stretching

Curves resist bending

Curves are attached to a user-defined geometry

Curves collide with each other

Adds volumetric object to the system

Volumes are incompressible

Volumes are affected by a boundary condition

Vorticity confinement is applied to velocity field

Adds gravity force

Adds buoyancy interaction between fluids and solids

Vorticity Confinement

Adds drag force interaction between fluids and solids

Fig. 5. The Solver Setup for the example shown in Figure 4. Root Group
contains the Hair Group, the Wind Group, and Behaviors which span the
two. Hair Group contains all the Behaviors needed to simulate the hairs
as discrete elastic rods independent of anything else in the simulation.
Wind Group contains all the Behaviors needed to simulate the wind as
an incompressible fluid defined around the hair. Each Behavior affects all
Objects within its current group and all of the child groups. ©Wētā FX.

automatically and is locked off from manipulation. This is an in-

tentional trade-off of less flexibility in front-end scheduling, for

simplicity and robustness of setups. Creating and managing node

graphs of small kernels of execution describing simulation stages

and dependencies more explicitly was considered, and would also

have supported many of our requirements, but it places a much

heavier burden on users to deeply understand how to build solvers

and how to manage interactions for weak and strong coupling in

all kinds of interactions. By moving to a higher level declarative

model, we still provide the ability to configure any combination of

objects and actions while removing the combinatorial complexity

of defining their dependencies explicitly; and allow users to operate

at a higher level than would be possible if the solvers were exposed

at a low enough node graph level to meet the other requirements.

4.2 Data Flow
While the Solver Setup is declarative, we still need a way to manage

the flow of data into and out of the solver. Regarding data prepa-

ration before the solver and post-processing afterwards, we have

struggled to compete with major digital content creation (DCC)

products the artists are already comfortable working within; so

in keeping with the Best-in-Class principle, we embrace them and

ensure Loki is available within multiple major applications. Loki pro-

vides plugins for these DCCs and heavily leans on them for data flow,

in order to keep development efforts focused on the simulations.

We build the Loki solvers, Solver Setup configuration, and a small

node graph for feeding data into the solver setups all independently

of any single DCC.

The flexibility gained in separating Loki data types and solvers

from any single DCC has made it feasible to create and maintain

Loki integration for seven separate applications, with the most us-

age seen in the SideFX Houdini plugin and Autodesk Maya plugin.

This separation also gave Loki developers freedom to use custom

data structures outside of those provided by the host applications,

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:5

Fig. 6. Data flow between Loki and the host application is via a live bridge
(represented as a plugin in the respective host), which handles the conversion
between host and Loki data types. ©Wētā FX.

such as a spatially adaptive volume which natively supports distri-

bution across multiple machines. We generalize the processes Loki

runs within as host applications since several of them are not com-

plete DCCs, such as a small stand-alone tool called wtLoki used for

headless evaluation or debugging. To keep a consistent experience

within these applications a common data flow pattern is followed,

as seen in Figure 6:

(1) Native host application nodes are used to load and prepare

data for simulation with the host application’s node graph.

(2) A Host-to-Loki plugin node is used for converting host appli-

cation data to Loki formats.

(3) A Loki Graph plugin node is used for executing the Loki node

graph. This accepts the output of Host-to-Loki nodes or other

Loki Graph nodes, and injects them into the Loki node graph.

The Solver Setup exists as a special node within the Loki

node graph for declarative configuration and execution of

the solver itself.

(4) A Loki-to-Host plugin node is used for bridging Loki data

back to the host application.

(5) Native host application nodes are used to do any post-processing,

visualization, or publishing of the simulation results.

While seemingly wasteful to convert data between host appli-

cation and Loki data types so often, we find in the large majority

of our use cases the cost of conversion is small compared the total

simulation runtime. The separation provides almost complete in-

sulation for our data types, keeping most of Loki agnostic of any

target application and the host application plugins narrow in scope,

mostly focusing on data type conversions. We found this to be an

acceptable cost for the high increase in productivity from artists

using native tooling; and the strategy has led to major wins in both

the Usability and Reusability goals.

Fig. 7. In a distributed configuration, the host application process handles
data processing upstream and downstream of the solver, while a group of
separate wtLoki processes work together over MPI to partition the solver
work and evaluate the Loki graph containing the Solver Setup. ©Wētā FX.

We provide a custom UI for configuring the Solver Setup and

building the node graph that connects data between the host ap-

plications and the Solver Setup. This UI also provides functionality

for nominating important properties to be directly controllable in

the host application by ‘exposing’ them to the host application so

users can manipulate them with native controls without needing

to open the Loki UI. Exposing properties allows senior artists to

build templates with a Loki configuration they would like to reuse

as native-looking nodes in the host application, and pass them on

to other artists who may not need to open the Loki UI, or even

know they are using Loki. Loki integrates fine-grained control of

individual simulation elements into artist workflows through the

preservation of attribute channels on top of incoming host appli-

cation data, which the Solver Setup then uses to override solver

settings at a per-object or per-primitive level. This lets artists spa-

tially vary and animate the material properties of the simulation

components, utilizing standard tooling.

When running distributed simulations, Loki switches to an alter-

nate form of execution, shown in Figure 7, where the Loki Graph in

the host process is only used for serialization and synchronization.

A group of separate processes running wtLoki work together to

partition the internal solver data and evaluate the Loki node graph,

including stepping the Loki Solver Setup, and communicating with

MPI. This strategy lets Loki work within major host applications, us-

ing familiar data preparation and post-processing workflows, while

minimizing changes needed to run distributed simulations.

5 DEVELOPER-FACING DESIGN
We now dive into the developer-facing design for the backend ar-

chitecture of Loki, used by developers to build and evaluate solvers.

The backend must be generic enough to describe many different

kinds of solvers, such as discrete elastic rods and incompressible

volumetric fluid, but also structured enough for many units of work

to talk with each other in whatever way the users combine them in

their Solver Setups.

5.1 Simulation Pipeline
We start by introducing the Simulation Pipeline and associated exe-

cution Stages, which are our way of representing time integration

inside of Loki. Our approach shares some design elements with ren-

dering pipelines, including a mixture of fixed functionality stages,

programmable stages, and a common set of interfaces used in the

pipeline.

The user-facing time step is a frame. Internally, frames are subdi-

vided into substeps, which may be uniform or adaptive. Substeps

are integrated implicitly using a Projected Newton solver, and hence

typically contain multiple Newton iterations. The nested structure

of frames, substeps, and Newton iterations constitutes the timeline;

see Figure 8.

Tasks. The user-facing Behaviors are ultimately responsible for

creating one or more Tasks which must be scheduled in a way that

ensures proper interaction between various solvers. We try to keep

the granularity of Tasks on the scale of a simple computational

kernel, such as transfer particle data to grid, compute divergence of

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:6 • Lesser, S. et al

a velocity field, or evaluate force Jacobians on the degrees of free-

dom. Creating rules for relative placement of Tasks associated with

each pair of Behaviors onto the timeline quickly gets out of control

due to combinatorial complexity. Instead, we quantize the timeline

by subdividing it into Stages. The Tasks created by each Behavior

are then mapped to prescribed Stages, with mapping being stati-

cally defined at development time. Maintaining consistently named

Stages—and ensuring that the algorithms evaluated in each Stage

map reasonably to the description of that Stage—is an imperative

part of creating a successful, holistic, and flexible system.

Having too few Stages impairs scheduling flexibility, which may

lead to relative ordering issues when two dependent Tasks get sched-

uled to the same Stage. Too many Stages becomes hard to manage,

especially when it comes to introducing those to the users, in case

they need to modify data within a step for art-direction purposes.

We have addressed this issue by introducing a relatively small user-

facing set of Stages, with the understanding they are somewhat

rigid and would not change often. Generally users are able to ignore

the Stages altogether, but an experienced user may employ the user-

facing Stages to insert custom particle or volume expressions to run

over each primitive in a Group, for added flexibility. This can be

seen as analogous to programmable shaders offering optional safe

places for users to customize functionality within a larger rendering

pipeline. The developer-facing Stages are more malleable and more

numerous, so developers can add, remove, rename, or reorder them

as needed, as long as the user-facing Stages are still valid.

Figure 8 shows how the hair-wind coupling example expressed

in terms of UI Behaviors in Figure 5 gets broken up into Tasks and

mapped onto the set of user-facing Stages. Note that the figure

shows a clear need for more developer-facing Stages: “Transfer

solids data” and “Add coupled drag” Tasks are scheduled to the same

Update Fluids Stage, when the data transfer needs to happen before

the drag can be applied. Consequently, internally those Tasks get

mapped to Data Transfer and Force Evaluation developer-facing

Stages, which are ordered appropriately with respect to each other.

Newton loop. The final time integration method is eventually

formed by the generated Tasks andmay vary based on the Behaviors.

For elastic solids, we seek the following:

f (x(t),v(t)) = f
elastic

(x,v) + f
external

(x,v) − finertia

(
∂v

∂t

)
= 0

That is, the total forces f—including elastic, external, and inertia

contributions—acting on at a location x on the body with instan-

taneous velocityv at time t should sum to zero. We discretize this

equation of motion in time and space, and use backward Euler for

temporal integration. This way, generalized positions and velocities

at time tn+1
are connected to their previous values at time tn as

xn+1 = xn + vn+1∆t (where ∆t = tn+1 − tn), such that the total

force residual f
(
xn+1,vn+1

)
vanishes. Correction to xn+1

and cor-

rection to vn+1∆t can be used interchangeably depending on the

context. For instance, drag force derivative is naturally computed

with respect to change in velocity, while elastic force derivative

makes more sense with respect to the change in position. Practi-

cally, they just differ by a factor of ∆t , so by convention we always

use derivatives of forces with respect to positions. With these force

Sub-stepping loop

Initialize

Load Balance

Prepare Solve

Update Solids

Pre Time-stepping

Newton iteration loop

Frame

Ingest Create curve objectCreate volume object

Fetch inputsFetch inputs

Pad around solids

Load balance Rebucketize / load balance

Rasterize solid geometry

Add elasticity Add attachments

Add coupled buoyancyAdd coupled drag

Add gravity Detect / add collisions

Solids Solve

Update Fluids

Fluids Solve

Solve solids system

Transfer solids data Add boundary conditions

Add incompressibility

Add coupled buoyancy

Add gravity

Add coupled drag

Solve fluids system

Update State

Group Exit

Group Enter

Post Time-stepping

Advection Update positions

Report results Report results

Timeline Tasks

Apply Operators Vorticity confinement

Fig. 8. A schematic representation of how wind (blue) and hair (orange)
related Tasks (right) in the coupling setup from Figure 5 are mapped onto
execution Stages of the timeline (left). Ingest Stage runs once at the be-
ginning and is responsible for creating all necessary Objects and Actions,
introduced in Section 5. Group Enter and Group Exit Stages are reserved
for transitioning of simulation data between different groups and are not
used in this example. The actual number of Tasks for our wind-hair coupling
setup is much larger than presented here, as we have aggregated some of
them into larger chunks of work to simplify the exposition. ©Wētā FX.

derivatives, we use Newton’s method to solve for the end-of-step

velocitiesvn+1
. Each Newton iteration, all solid forces are assem-

bled into a single system and solved at the same time to obtain a

velocity correction. Positions are then updated to yield the next

Newton iterate.

Fluids are different in that they are more commonly solved for

via operator splitting, and hence position correction (advection) is

separated from velocity correction (pressure, viscosity, and other

solves). They are only advected once at the end of the Newton loop,

so that the Eulerian representation remains fixed for the whole time

step. Multiple fluids can be coupled to each other strongly via multi-

phase solves, but when it comes to coupling a solid and a fluid we

generally opt for a weak coupling solution. Within each Newton

step we first perform a solid solve, assuming the state of the fluid

is fixed. We then perform fluid-related solves, with fixed solids. To

improve the stability of this weak coupling scheme, information

about the solid inertia and derivatives of solid-fluid interaction

forces such as drag are incorporated into the fluid system matrix

as described in [Stomakhin et al. 2020]. Note that in some cases,

such as rigid bodies in water, our weak coupling scheme reduces

to strong coupling and can be solved with a single Newton step,

similar to [Batty et al. 2007].

5.2 Intermediate Layers
Choosing an optimal scope for a Behavior is a non-trivial task.

Consider a basic grid-based volumetric simulator, such as the wind

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:7

UI Volume Object
Behavior

Pressure Material
Behavior

Gravity
Behavior

Collision
Behavior

Volume
Object

Discrete
Volume

Pressure
Constraint

Gravity
Force

Boundary
Constraint

Abstract timelineBackend

User facing Behaviors

Created Actions

Created Objects

Functional dependencies

Scheduling of unit tasks

to abstract timeline

Fig. 9. A fluid solve is expressed using our user-facing set of Behaviors. Internally each behavior creates an Object or an Action with corresponding functional
dependencies between the two. This translates into the required computational work that needs to be performed: for Objects and Actions to maintain and
update their state and for Actions to affect Objects. The units of work are automatically scheduled to Stages of our simulation pipeline. ©Wētā FX.

component of hair in wind, as an example. Should a single behavior

represent

(1) A simple computational kernel, such as divergence or gradi-

ent computation?

(2) A more complex procedure, such as a divergence-free projec-

tion?

(3) An entity that would ensure that a volume is incompressible?

(4) An entire volumetric system with collisions, forces, viscosity,

and pressure solves?

Option (1) is too fine-grained for automatic scheduling, as a sim-

ple mathematical operation makes sense and may exist virtually

anywhere along the timeline. This inevitably places the burden of

ordering the Behaviors on the users, which goes against the goal of

“a Behavior is a user-facing entity, whose role is to describe what

should be simulated and not when” which is key for our Avoid

Combinatorial Explosion principle.

Option (2) steps aside the explosion on number of Behaviors and

alleviates the ordering issue within an algorithm unit. However,

divergence-free projection could be seen in many contexts other

than just volumetric simulation, and hence binding it to a prescribed

Stage becomes a limitation in those scenarios.

Option (4) may seem attractive to the users, especially if equipped

with an intuitive UI. However, such Behaviors tend to grow exces-

sively large as the corresponding systems require more and more

features, which becomes a maintenance nightmare for the devel-

opers. It is also unclear how to enable coupling between two such

systems.

Option (3) may, at first glance, seem to be the same as Option (2).

It is true that both essentially perform a divergence-free projection

under the hood. However Option (3) binds it to a specific applica-

tion familiar to users: enforcing incompressibility of a volume they

are interested in simulating, as opposed to being a mathematical

abstraction. Such formulation is not only intuitive for the users to

work with, but allows the developers to unambiguously map the

underlying mathematical procedure to the timeline. Thus, we deem

Option (3) as the best description of a unit of work that a Behavior

is responsible for performing. We refer to such units of works as

Actions and introduce them more formally below.

5.2.1 Scheduling work. A Behavior has two ways of scheduling

work: by creating Objects and/or creating Actions, as shown in Fig-

ure 9. These are deferred entities that are allowed to store internal

state, depending on the specific Object or Action in question, and

modify state using Tasks.
An Object is a physical object in space that is simulated forward

in time and may store a mix of internal data representations. The

Object is responsible for maintaining a consistent internal state.

For instance, the Volume Object in Figure 9 would be responsible

for performing advection at the end of the time step, but also for

resetting the force channel before new forces are accumulated for the

Newton loop. Different types of Objects are described in Section 6.1.

An Action is a deferred operation that operates on a single Object

and, depending on the type of Action, can modify the state of the

Object. We distinguish between three derived types of Actions:

Forces, Constraints, and Operators, and discuss them in more detail

in Sections 6.2, 6.3, and 6.4, respectively.

A Behavior may create any number of Objects and Actions it

needs to perform its intended work. A Behavior is also responsible

for updating the Objects and Actions it creates with new user input.

These could be key framed attributes, or animated data streaming in

from a file. Objects and Actions are then responsible for spawning

Tasks and mapping them onto the execution Stages. Consequently,

the Stages become semantically meaningful barriers inside the sys-

tem, for when Objects and Actions are required to have reached a

certain internal state.

5.2.2 Stage evaluation order. We now define a simple evaluation

order by going through each Stage and Group and giving a callback

to every Behavior, Object, and Action. See Algorithm 1. The con-

figuration of Stages, Groups, and Behaviors are all known given

any particular Solver Setup before a simulation starts; however, the

number of Objects and Actions created by Behaviors are not known

a priori.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:8 • Lesser, S. et al

ALGORITHM 1: Solver evaluation order

for each stage ∈ Stages do
for each group ∈ Groups do

if stage ∈ UserFacingStages then
for each behavior ∈ Behaviors do

run(stage, behavior)
end

else
for each object ∈ Objects do

run(stage, object)
end
for each action ∈ Actions do

run(stage, action)
end

end
end

end

Although all simulation-related Tasks are scheduled through the

developer-facing stages, there are still reasons to evaluate Behaviors

for the different user-facing stages. Dynamic settings that change

during the course of the simulation must be propagated down to the

Action or Object in question, and it is the Behavior that created the

object that is also responsible for updating it. Additionally, users are

allowed to inject custom kernels via C++ expressions that operate

on the native Loki data types. This is done by creating an expression

Behavior that operates on all particle or discrete volume primitives

in the enclosing Group.

Objects, Actions and their derived types were not a major initial

design decision for us. They emerged as a necessary intermediate

layer to manage the complexity between the very high-level user-

facing Behaviors and low-level Task computations. Nevertheless,

they became invaluable unifying interfaces for ensuring a consistent

system at a manageable level of abstraction.

5.3 Fundamental Data Types
Fundamental data types are the major storage data structures we

use as building blocks to ultimately represent the internal state of

any Object or Action. To achieve the Performance requirements

within the Hardware constraints, we include support for distributed

simulations, to solve large simulations over multiple machines us-

ing the Message Passing Interface (MPI) library for inter-process

communication. Efficient support for distributed simulations is built

all the way into the fundamental data types to track how data is

available locally or remotely, which we detail below.

Grid Domain. The Grid Domain is a shared component between

the various data objects within the Loki solvers. It maps space as

a uniform grid where each cell is referred to as a Bucket, meaning

it can contain data. Buckets are stored sparsely to avoid allocating

memory for empty space. A Grid Domain can have multiple levels

where each level consists of Buckets of the same size, and adjacent

levels change in size by a factor of 2 in each dimension. This is

similar to an octree, but can be sparse both spatially and by level.

Each Bucket is assigned to be owned by a particular process leading

to three subsets of Buckets per process:

• Local subset contains all Buckets owned by the current pro-

cess. Full read/write access is available for data within these

Buckets, and it is the responsibility of the current process to

ensure data within these Buckets are updated on any algo-

rithms currently running. For example, for hair in the wind,

the bending constraint is only applied on vertices within the

local subset for each process.

• Neighboring subset contains neighbors of local Buckets which
are not themselves local Buckets. Read-only data access may

be available for these Buckets so they are available for al-

gorithms which require neighboring information to update

the local subset; such as collision detection for hair includ-

ing neighboring Buckets in the search for possible collisions

when iterating over the local subset.

• Remote subset contains all the remaining Buckets, there is

generally no data stored for these Buckets except to indicate

which process owns them. Avoiding storing the remote subset

data is critical to supporting simulations larger than would

fit within a single machine’s capacity, and significantly raises

the ceiling of the scale of simulations supported.

The Grid Domain is regularly load balanced to reorganize Buckets

into subsets, with the aim for each process to have the same amount

of data within their local subset, and for the size of each neighboring

subset to be minimized. Load balancing is generally accomplished

by ordering the Buckets using a Hilbert or Morton space-filling

curve, and then partitioning the Buckets based on a weighting of

the amount of data within each Bucket, such as number of particles

and/or voxels. Users do not directly interact with a Grid Domain,

and instead work with Particle Systems and Discrete Volumes which

use a consistent Grid Domain behind the scenes to track their data,

see Figure 10.

Particle System. The Particle System is the main data object for

storing Lagrangian data. It tracks a subset of the Buckets residing in

the Grid Domain and uses these Buckets to partition particles. Each

particle is represented using position and configurable channels

Fig. 10. A schematic illustration of a Grid Domain shared between two
processes: red and green. Grid Domain tiles may be utilized by a Particle
System to store particle data, or a Discrete Volume to store voxel data.
©Wētā FX.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:9

for any additional properties such as velocity, radius, mass, index,

and so on. Memory is allocated in chunks corresponding to a single

channel of data for all particles within a Bucket. Operating on a

Particle System is limited to updating the local subset with read-

only access to the neighboring subset and dispatched per Bucket to

multiple threads. This allows for work to split both locally across

threads and distributed across multiple processes, while still hav-

ing coherent memory access to all the particles within the current

Bucket. The Particle System must be rebucketized when particles

change position in order to ensure all particles reside in the correct

Bucket for their current position. Currently a Particle System will

only use the default highest resolution level of Buckets of a Grid

Domain; however we plan to lift this limitation in the future to be

able to handle spatially adaptive Particle Systems.

Discrete Volume. The Discrete Volume is the main data object for

storing Eulerian data. It tracks a subset of Buckets residing in the

Grid Domain, and subdivides each Bucket into a small voxel grid.

The Discrete Volume stores multiple channels, where each channel

is defined by a type, resolution, and sample location (cell centered or

face centered). The channel resolution determines how many voxels

each Bucket will be subdivided into, typically 8
3
. For a single chan-

nel, the resolution within a Bucket is the same for all Buckets; but

the resolution can vary between channels. Like the Particle System,

the Discrete Volume allocates memory in chunks corresponding to a

single channel of data for a Bucket; and work is limited to updating

the local subset, parallelized by Bucket over multiple threads. The

Discrete Volume uses the Grid Domain’s multiple levels of Buckets

to track spatially varying volumes, where the Buckets can change

by a factor of 2 in each dimension between the levels of the Grid

Domain. By convention, we use graded spatially varying volumes

where the neighboring Buckets need to be within one Grid Domain

level in either direction of the current Bucket, including corners.

A Discrete Volume together with its Grid Domain constitute an

efficient volumetric data structure. While it shares many common

features with other state-of-the-art sparse tiled formats such as

SPGrid [Setaluri et al. 2014], OpenVDB [Museth 2013, 2021], and

Bifröst [Bojsen-Hansen et al. 2021], it sets itself apart via native

support for distributed computing over MPI.

Mesh Types. We have several data types specialized for tracking

different kinds of mesh topologies, including Curves, Wireframe,

Surface, and Body. These data types focus on tracking channels

of data across geometric primitives such as vertices, faces, edges,

tetrahedra, curve segments, and so on. These data structures do not

make direct use of the Grid Domain and are generally used to move

data in and out of the solver. Within the solver, mesh-based Objects

generally contain one or more Particle Systems on which the solvers

operate, but topology information is kept by additionally storing

one of these mesh types. The solver will then on occasion reference

the topology, such as during collision detection with meshes, or

when reporting the results back onto the original mesh to return to

the user.

5.4 Data Access Patterns
All algorithms are structured by sequential iteration over buckets.

Any channel that needs to be read from or written to is declared

using an Accessor interface. For read-write access, only the data

in the current bucket can be read from and written to. For read

only access, the data from the current bucket and its surrounding

neighbors can be read, depending on the specified stencil pattern.

OpenMP is used to achieve parallelism over multiple threads and

each process only iterates over its local subset of buckets, giving

parallelism over multiple processes by design. The Accessor inter-

face handles the logic of determining the iteration order and tracks

the dependency each bucket has on its immediate neighboring buck-

ets. This dependency information is used to schedule transfers of

neighbor bucket data to and from other processes. This hides much

of the complexity of distributed processes for the developer.

There are specialized Accessors for Discrete Volume and Parti-

cle System and a Multi Accessor for accessing channel data from

multiple data representations when visiting a bucket. The Multi

Accessor is useful for algorithms that interpolate channel data from

one representation to another, such as particle to grid transfers.

6 IMPLEMENTATION
We now focus on the interface of the Objects and Actions, their

derived types, and implementation of some notable examples. These

components bring together varied solver components in a manner

allowing them to easily interact with minimal understanding of

each other, and makes them the major unifying elements of the Loki

solvers.

6.1 Objects
Objects correspond to visual elements in the scene; they are the

primary outputs of the Loki solver. They can be fully Lagrangian

(solids), Eulerian (gas), or hybrid (particle-in-cell fluids or MPM).

Loki Objects need to adhere to a common interface, specifying in

particular how they are mapped to the Grid Domain for distribution

and what their degrees of freedom are.

Degrees of freedom. Degrees of freedom (DOFs) are the unknowns

of the system, that must be solved to compute the state of the Object

at the end of the time step; they dictate the size and the contents of

the final system matrix. For most Objects, DOFs are 3D quantities

such as linear or angular velocities, but they can also be of arbitrary

dimensions such as scalar twist for Discrete Elastic Rods [Bergou

et al. 2010].

They are defined either on a Particle System for Lagrangian

Objects, or a Discrete Volume for Eulerian Objects. DOFs for all

strongly-coupled Objects to be solved are concatenated in a global

matrix system (Section 6.5), while weakly coupled Objects are solved

individually.

Embedded particles and frames. Embedded particles and frames

abstract the definition of Actions from the DOFs of the objects they

are expressed on, so that a single implementation automatically

handles maximal coordinates, reduced coordinates, or anything

in between. Objects provide semantically defined embedded parti-

cle systems, such as boundary particles which represent the outer

shell of the Object, or material particles which represent its interior.

Object-defined shape functions automatically handle conversions

between the embedded particles and the actual DOFs, so that Actions

need only consider this higher-level interface.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:10 • Lesser, S. et al

When necessary, Actions can also ask for emission of custom

embedded particle systems. For instance, FEM-style constitutive

models define quadrature points on the cells of thematerial particles,
depending on the required integration order: usually a single cell-

centered point for linear elasticity, or higher-order Gauss-Legendre

quadrature if needed. Again, Loki will leverage the Object shape

functions to transparently handle the conversions from and to the

final Object DOFs.

Embedded Particle Systems may carry not only positions, but also

local affine frames F ∈ R3×3
describing the material deformation

gradient around those points. This is not only useful to express

Constraints that depend on this deformation gradient, such as elastic

constitutive models, but also to systematically associate a local

orientation to particles, as is required for rigid attachment.

Notable Objects. There are many different Objects that Loki pro-

vides. We will look more closely at the Curves Object and Volume

Object used in our recurring hair in the wind example.

The Curves Object represents the simulation data and parameters

for hair simulation. Following the discrete elastic rods [Bergou

et al. 2010, 2008] discretization, it handles reconstructing the curve

material frame from vertex positions and edge twists. It uses two

Particle Systems to store vertex-defined and edge-defined quantities,

and a Curves data type to store the topology of the curves.

The Volume Object manages simulation data and parameters for

Eulerian simulations. The data is stored using a Discrete Volume,

where different channels are used to store quantities such as density,

pressure, temperature, and velocity. Channels are also used to store

concentrations of different materials (gases or particulates). Auxil-

iary channels are used to store the discretization of solid boundaries.

Velocities are typically stored at face centers, and other channels are

generally stored at cell centers. The Volume Object is responsible

for executing emission, padding, and advection.

Other Objects. The solver framework contains a number of other

Objects for different solvers, such as Geometry Object for elastic
solids, Hybrid Object for FLIP liquids, MPM Object for MPM objects,

Particle Object for particles and Rigid Body Object for rigid bodies.

6.2 Forces
In Loki parlance, a Force is a type of Action that is used to implement

any force that is independent of other discretization points. This

makes it the natural choice for implementing external forces such

as gravity and various drag forces.

For Lagrangian Objects, all forces f ∈ R3
and force Jacobian

∂f
∂x ∈ R

3×3
are accumulated together with the Constraints (see

Section 6.3) into a global linear system to be solved at each Newton

iteration. By omitting the force Jacobian term for a specific force,

the integration of that force effectively becomes explicit, making it

possible to mix both explicit and implicit force formulations in the

same simulation.

For Eulerian Objects, we use an operator splitting approach and

calculate a new velocity u⋆i for each node i and Newton iteration as

u⋆i = ui −
1

∆t

[
∂ fi
∂x

]−1

fi .

This is done at the start of the Newton loop, and Constraints and

Operators will get u⋆ as input.

Force Density Fields. The simplest type of Force is obtained by

sampling an externally provided vector volume, which can either be

interpreted as force per unit mass (e.g., gravity) or per unit volume

(e.g., buoyancy) depending on the settings. Various masking tools

are available for the users.

Fluid Drag Force. This Force is exerted between a fluid volume and

a Particle System, and depends on the relative velocity between the

two. It may also depend on particle radii, orientation, and distance to

the liquid surface if particles represent a liquid. The fluid volume can

either be input as an externally provided volume, or from another

simulated Eulerian Object in the Solver Setup. In the latter case, the

forces exerted by the fluid onto the particles may be negated and

splatted back onto the fluid grid to couple the two objects.

6.3 Constraints
In Loki parlance, a Constraint is a type of Action that is used to

implement any implicit interaction between at least two particles,

that is, any term that will induce off-diagonal coefficients in the

system matrix.

Constraints can either be assembled in stiffness mode, contributing
directly to force derivatives of the affected Objects, or in compliance
mode through introduction of Lagrange multipliers as in [Tournier

et al. 2015]. In practice we favor the former for soft Constraints, and
the latter for hard Constraints, such as collisions.

Formulation. We provide facilities for assembling Constraints

modeling an energy of the form

E =
∑
l

Cl ({x}l ,pl)
T Sl (pl)Cl ({x}l ,pl) (1)

where C : R3Nl × RPl 7→ RM is the Constraint function evaluated

from a subset of particle positions {x}l and a set of parameters pl
(e.g. rest quantities), and Sl areM ×M scaling matrices. Under the

hood, a Constraint Particle System is emitted and the user simply

needs to fill, for each Constraint particle l , the channel data corre-
sponding to the Constraint function, its gradient with respect to

the Object particle positions, and optionally its Hessian and scaling

matrices. Overrides are available for the rare Constraints that do not

fit this formulation, though some manual assembly is then required.

As an example, the Distance Constraint emits one constraint parti-

cle with dimensionsM = 1,Nl = 2, Pl = 1 for each edge of the target

Curves or Mesh. The scalar-valued constraint function is defined

as Cl = ∥xl1 − xl2 ∥ − dl , the difference between the current edge

length and the rest length parameter dl — usually the start-time

edge length. Our embedded Particle System abstraction ensures that

the Distance Constraint will work for any kind of Object defining a

Curves or Mesh geometry, regardless of whether it is embedded or

not.

Dynamic damping. Any Constraint using the energy formula-

tion (1) automatically defines two damping termswith user-controllable

coefficients.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:11

• Rayleigh damping, corresponding to dissipation potential

V =
∑
l τl ÛCl

T
Sl ÛCl , with τl a typical relaxation time in sec-

onds and Constraint velocity ÛCl =
∂Cl
∂xi

∂xi
∂t [Brown et al.

2018].

• Dahl friction, generalizing the approach of [Miguel et al. 2013]

replacing the strain rate with the Constraint velocity ÛCl .

Inverse dynamics. Many learning applications require accessing

the derivatives of the physics forces with respect to user-defined

parameters. Our Constraint framework automates this, requiring

developers to simply provide derivatives of the Constraint function

Cl , and optionally of the scaling matrix Sl , with respect to the

parameters pl . Examples of such applications include:

• Compensating for gravity at the start of a simulation; for

instance, in an attempt to reduce hair sagging. This can be

solved in a least-squares sense as minp ∥ f (x0,p)∥, possibly
with supplemental regularization. Our Constraint framework

automatically assembles the matrices necessary to perform

Gauss-Newton iterations on this minimization problem.

• Matching a target state. As the equilibrium state of our simu-

lator satisfies f = 0, the Jacobian of the equilibrium position

xeq with respect to the Constraint parameters can be com-

puted through the implicit function theorem as

∂xeq

∂p
= −

[
∂ f

∂x

]−1 ∂ f

∂p
.

Evaluating the Jacobian in the target residual direction (i.e.

performing a back-propagation step) thus roughly amounts

to one forward Newton iteration.

Attachment Constraint. Following the Avoid Combinatorial Ex-

plosion principle, we want our Attachment Constraint to work on

any pair of Objects, regardless of their topology, and avoid having

to write specific code for any kind of coupling. To achieve these

goals, we separate the definition of a Constraint Behavior into two

Stages, Emission and Response.
The Emission Stage specifies which points on a set of Objects

should be attached together. The user may provide explicit attach-

ment networks (low-level workflow), or the Constraint may gen-

erate them automatically using closest-point or all-within-range

queries (high-level workflow). For the latter, we only need to imple-

ment these spatial queries once for each kind of boundary topology

(surface, curves, points). The user may also choose to emit Con-

straints only once at the start of the simulation, or continuously at

each simulation time step.

The Response Stage must allow modeling of any kind of Con-

straint, from maintaining distance only to fully rigid, regardless of

which kind of Objects are attached together. For this, we leverage

the embedded boundary Particle System frames F and denote the

interpolated frames at the source and target points as Fsource and
Ftarget, respectively. For rigid attachment, we want to maintain the

relative displacementd = xsource−xtarget in the target frame Ftarget;
however, for pure distance-preserving constraints, this would intro-

duce an unwanted linearization. To handle both cases, we define a

new attachment frame A
(
d, Ftarget

)
that interpolates between the

target frame and a displacement-aligned frame based on a flexibility

coefficient ξ . For ξ = 0,A
(
d, Ftarget

)
coincides with Ftarget, while for

ξ = 1, the first axis of the attachment frame is fully aligned with d .
Equipped with this new attachment frame, we define our Constraint

function C as the concatenation of four 3D terms C0 . . .C3
,

C0
:= A

(
d, Ftarget

)T d −
(
L̄, 0, 0

)
,

Ck := A
(
d, Ftarget

)T F
source,(k) − āk for k = 1 . . . 3,

with L̄ the constraint rest length and āk rest orientation parameters.

We can then play on the flexibility parameters ξ and the scaling

matrix S to adjust the behavior of the Attachment Constraint. To

reduce the number of exposed parameters, we typically use

S := diag(kN ,kT ,kT , β1, β1, β1, β2, β2, β2, β3, β3, β3).

• For ξ = 0, the Constraint will maintain the relative position

of the source frame in the target point, and the strength of

the normal and tangent responses can be adjusted with kN
and kT , respectively.
• For ξ = 1, the Constraint will maintain the distance between

the two attached points, and kT will be without effect.

• For βk > 0, the Constraint will also maintain the relative

orientations of the two Objects. This is especially interesting

for attaching rigid bodies, or the root of a hair strand to the

scalp to limit twisting.

Collision Constraint. Similar to the Attachment Constraint, we

want our Collision Constraint to work on any pair of Lagrangian

Objects, regardless of their topology. Again, we separate the Con-

straint workflow into two passes, Detection and Response. The Detec-
tion pass may use one or multiple algorithms among point-signed

distance field (SDF), mesh-based continuous-time, and lattice de-

tection [McAdams et al. 2011]. Combining those algorithms can

be beneficial, for example mesh-based continuous-time collision

detection will be more precise, but SDF-based detection will offer

more robust depth information. Collision detection is accelerated by

leveraging the Bucket-structure nature of Loki Objects: only primi-

tives living in the neighboring Buckets are considered as potential

collision candidates. This greatly reduces the amount of commu-

nication necessary between machines, but imposes a limit on the

maximum relative velocity between colliding Objects. In any case,

the Detection pass generates a set of Constraint particles with co-

ordinates of contact points, contact normal, and target separation

distance, which will be consumed by the Response algorithm.

For the Response pass, two algorithms are again available and

can be combined. The first is implicit penalties; in this case, we

simply define the Constraint function as the concatenation of the

penetration distance and the tangential displacement clamped with

a Coulomb-like law. The other more commonly used response op-

tion is hard collisions; we follow the method from [Daviet 2020]

and extend it to support rotational degrees of freedom (as with

rigid bodies) by falling back to the local Coulomb friction solver

from [Daviet et al. 2011]. Efficient distributed solves are achieved by

sorting contacts depending on whether they are fully local, involve

a foreign particle, or involve a particle touched by a foreign contact,

and focusing on local computation while cross-machine transfers

happen.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:12 • Lesser, S. et al

6.4 Operators
For Actions that do not fall into Force or Constraint categories, Op-

erators provide a way to modify simulation state without affecting

the coupled system for solids or weak solve for fluids. They can

be used to achieve state transitions on Objects (e.g., the emission,

absorption, merging, and splitting of fluid particles), apply external

and artistic controls (e.g., vorticity confinement, fluid targeting, and

partial kinematic guiding), or run secondary solves (e.g., SPH and re-

duced flow solves). Despite greater freedom of Operators compared

to Forces or Constraints, it is the responsibility of each Operator

itself to handle interactions and coupling across Objects and ensure

conservation of mass, linear and angular momentum, and so on.

Vorticity Confinement Operator. The Vorticity Confinement Op-

erator adds a vorticity confinement correction term to each of the

affected discrete volumetric velocity fields on every simulation step,

as described in [Fedkiw et al. 2001]. This models the small scale

rolling features of fluids that are absent on most coarse grid simula-

tions.

Coupled Buoyancy Operator. The Coupled Buoyancy Operator

defines the interaction between a Lagrangian Object and an Eulerian

fluid, which can either be represented as a simulated Hybrid (FLIP)

or Volume (Eulerian) Object, due to the shared pore pressure as

described by [Stomakhin et al. 2020]. The Lagrangian Object acts as

a collider in the pressure projection. Optionally, a compliance term

may be added to account for its inertia. This makes it possible to

deal with a variety of coupling situations from hair in the wind to

rigid bodies floating on the ocean surface.

6.5 Linear Equation Solvers
Both fluid and solid implicit updates within our Newton step boil

down to systems of linear equations. To put it in Loki terms, we

would want to choose a linear solver depending on the kind of Force

or Constraint being simulated. Mixing multiple Objects, Forces,

and Constraints, however, and coupling them strongly complicates

things considerably, as then the system matrix may potentially

contain sub-blocks with drastically different properties, and the

choice of linear solver becomes non-trivial.

We encounter a tension between the overall Performance goal and

the Avoid Combinatorial Explosion design principle, which when

Fig. 11. Thin film. Example frame of a thin film simulation on a skin surface
following [Stomakhin et al. 2019]. ©Wētā FX.

ALGORITHM 2: Predictor-Corrector LCP Solver

Input
A system of linear equations from mixed LCP

Ax + b = w = w+ −w−
0 ≤ u − x ⊥ w− ≥ 0

0 ≤ x − l ⊥ w+ ≥ 0

Predict
A′x ′ = b′ ← Ax = b without constraints

Solve A′x ′ = b′ with Preconditioned Iterative Solver

Correct
Set initial guess of PGS as x ′

Solve Ax = b with PGS

return x

taken to the extreme leads to writing specialized optimal solvers for

each combination of behaviors or a single linear equation solver for

all use cases respectively. The former option was not a sustainable

scope of work. The latter was also found to not be sufficient as

solving such a wide variety of systems has been studied extensively

in the linear algebra literature [Golub and van Loan 2013], and

there is no one-size-fits-all solution for the range of systems and

scales encountered in production. We settled for a middle ground

with a handful of custom linear equation solvers which provide

excellent performance on our most common use cases while still

maintaining wide coverage of solid performance both locally and

distributed. Below we present the collection of linear solvers that

Loki implements and explain when each of them is used. On a

rare occasion when our linear solver of choice fails, we would use

PARDISO as a potentially slower, but a fail-safe option.

Smoothed Aggregation Algebraic Multigrid (SA-AMG). Pressure
and viscosity solves for fluids typically lead to large sparse systems

of linear equations; and Krylov subspacemethods, such as Conjugate

Gradient (CG), are known to perform well in those scenarios. In its

pure form CG demonstrates poor convergence properties, and gen-

erally requires a preconditioner to achieve acceptable performance

results [Barrett et al. 1994; Young 1971]. Multigrid methods offer by

far the best preconditioning for Poisson-like problems [McAdams

et al. 2010]. To avoid the overhead of tuning Geometric Multigrid

for every specific problem at hand, we opt for implementing an

Algebraic Multigrid (AMG), which adjusts automatically depending

on the properties of the system matrix. Specifically, we implement

Smoothed Aggregation (SA) AMG as a preconditioner for CG [Demi-

dov 2020; Janka 2007; Tamstorf et al. 2015] and use it for all of our

fluid updates. Figure 12(a) shows a benchmark test of SA-AMG for

a simple smoke scene. We compare our SA-AMG solver to CG with-

out preconditioner and sparse direct solver(PARDISO) for reference.

SA-AMG gives much better convergence rate and reduction of com-

puting time over CG. Also the test shows that the iterative solvers

perform better than the sparse direct solver for this kind of problem.

Predictor-Corrector Linear Complementarity Problem solver. En-
forcing non-stick Neumann boundary conditions inside the pressure

solve for fluids results in a mixed Linear Complementarity Prob-

lem (LCP). There are many methods for solving LCP; the most

famous and widely used one is Projected Gauss-Seidel (PGS) [Ben-

der et al. 2014; Silcowitz et al. 2010]. PGS works successfully for

many applications, but for large problems the convergence rate is

still rather slow [Young 1971]. Instead, we have developed a simple

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:13

predictor-corrector technique based on the idea that the solution

of a system that ignores the constraint will be close to the solution

of the original LCP. As outlined in Algorithm 2, we apply a robust

preconditioned iterative solver, typically SA-AMG, as a predictor

and set the solution as initial guess for PGS. As the initial guess

is close to the solution, PGS now converges quickly. Figure 12(b)

shows the result of a benchmark test on a simple dam break simula-

tion with non-stick fluid boundary condition. The result shows that

our simple technique saves compute time considerably, with much

better convergence rate compared to PGS alone.

Manybodies iterative solver. Stiff Forces and Constraints for many

solid objects is another important use case which encompasses hair,

plants, muscles, and so on. For a small number of DOFs, direct

solvers are generally preferable, as iterative ones may experience

convergence issues. However, as the number of DOFs increases

direct solvers quickly become inefficient as well. We thus introduce

a custom solver for such large stiff problems, which we call the

manybodies iterative solver, since it is typically used for setups with

multiple interacting solid objects.

Figure 13(a) shows the characteristic matrix structure that a sys-

tem consisting of multiple objects creates. Diagonal sub-blocks cor-

respond to Objects, and additional off-diagonal termsmay be present

because of Collisions or Attachment Constraints. We start with ap-

plying a direct solver to each of the diagonal sub-blocks, ignoring

off-diagonal connectivity, as shown Figures 13(b) and 13(c). We then

use this procedure as a preconditioner for the full system inside

an iterative solver, typically CG. This approach gracefully handles

different material properties of individual objects independently

(which allows for trivial parallelization) within the preconditioner,

and leaves Collisions and Attachment Constraints resolution to the

10 1100101102103

SA-AMG

CG

PARDISO

PC-LCP

PGS

Manybodies

SA-AMG

PARDISO

Time spent, seconds

0.66

2.46

108.73

1.31

192.98

0.68

41.08

2.83

(a) Smoke
(1.2M)

(b) Dam Break
(1.6M)

(c) Wet Hair
(0.048M)

10 1 101 103 105

Memory consumption, MegaBytes

246.23

35.24

15653.05

386.29

12.14

15.46

393.24

239.49

Fig. 12. Runtime and memory results for benchmark tests of linear equa-
tion solvers. The numbers besides each benchmark indicate the size of the
system of linear equations. (a) Smoke benchmark compares our SA-AMG,
CG without preconditioner, and popular sparse direct solver PARDISO on a
smoke plume. (b) The Dam Break benchmark compares PC-LCP to PGS on
a LCP dam break with non-stick fluid boundary conditions. (c) TheWet Hair
benchmark compares our Manybodies solver, our SA-AMG, and PARDISO
on a wet hair simulation. ©Wētā FX.

(a) Many objects problem and system matrix

A

B

C

Contact

A

B

C

A-1

B-1

C-1

(c) Preconditioner M-1

A

B

C

(b) Block diagonal approximation of system matrix

Fig. 13. The manybodies problem creates a block structure where: (a) Each
Object creates a sub-block. If there are Constraints between Objects, then
connectivities are added to the blocks. (b) The manybodies iterative solver
creates sub-blocks and simply ignores the connectivity between blocks. As
connectivity won’t be a major component of the systemmatrix, the diagonal
blocks will be a good approximation of original matrix. (c) The manybodies
iterative solver provides the inverse of each sub-block independently. As
sub-blocks are quite small compared to the entire system matrix, applying
a direct solver for each sub-block is efficient. ©Wētā FX.

encompassing iterative procedure. Figure 12(c) shows a performance

comparison between our manybodies iterative solver, our SA-AMG

solver, and the MKL PARDISO sparse direct solver.

The manybodies iterative solver can be regarded as a variant of

domain decomposition [Boxerman andAscher 2004] and prefiltering

methods [Eberle 2018; Kim and Eberle 2020; Tamstorf et al. 2015].

The main difference is that a block is created per Object, rather than

using a prescribed size or graph partitioning. The blocks are then

used as preconditioning matrices. Thus, a typically small number

of intricately tangled DOFs within as single Object, such as a FEM

mesh, are resolved with a direct solver. Constraints on the other

hand lead to a sparser inter-block connectivity, which is readily

resolved with an iterative solver.

7 APPLICATIONS
We now describe five applications of Loki to specific physics-based

animation problems. These applications are representative of work

required by technical artists for elements in major film or TV pro-

duction. All would generally require multiple distinct passes and/or

multiple artists, but can be done by a single Loki user in a single pass.

Table 1 shows performance numbers for the applications below and

other examples in the paper.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:14 • Lesser, S. et al

Bulk water (FLIP)

Spray (SPH)

Mist (BDC)

Air Phase

Fig. 14. A breakdown of the water states we use in our state machine
approach for multi-scale water. Particles split and transition as they move
from bulk water to spray to mist. The methods used in each state are
optimized for the respective scale. ©Wētā FX.

7.1 Boat Wake
Our first application demonstrates the power and versatility of using

our declarative configuration to define a state machine for boat wake

simulations. Simulating a boat wake presents a challenging scenario

because it involves water behavior at multiple scales simultaneously.

This behavior can be broken down into three components or states

that are represented as Groups, as described in Section 4.1:

(1) Bulk water: The large-scale motion of water as it collides with

a fast-moving boat.

(2) Spray: Thin features like tendrils and large irregularly shaped

water droplets that split off from the bulk water.

(3) Mist: Fine droplets forming from the spray which are highly

affected by air drag.

While a very high-resolution FLIP water simulation could resolve

each of these states, it would be prohibitively expensive to do so.

This problem is exasperated in production scenarios where a large

number of boat wake simulations are needed on a tight schedule.

We apply the Best-in-Class design principle to note that different

simulation methods even within the same simulation would be

advantageous, so we simulate each of these states within the same

simulation but with different simulation methods that maintain high

fidelity while being much more efficient for their respective scales

and behaviors.

We simulate the bulk fluid with FLIP, spray with SPH, and mist as

ballistic particles that can collide and coalesce or separate. We use a

method we call binary droplet collisions (BDC) based on [Jones and

Southern 2017] to resolve ballistic particle collisions. This results in

a much more natural distribution of particle radii as the simulation

progresses. A breakdown of these states and methods is shown in

Figure 14.

Loki’s declarative configuration paradigmmakes this setup straight-

forward. The bulk water is represented with a Hybrid Object with a

Pressure Material Behavior to ensure incompressibility. The spray is

represented as a Particle Object with an SPH Behavior. The mist is

represented as another Particle Object with a BDC Behavior. Finally,

we also create a Volume Object to represent air and use a two-way

coupled Drag Force Behavior to capture interaction of spray and

mist with the surrounding air.

7.1.1 State transitions. With the behavior of each state defined, we

now describe how we transition particles between the states in two

parts: our transition criteria and our particle up-resolution process.

Our transition metric is based primarily on speed, distance to the

fluid surface (bulk water to spray only), near-neighbor count, and

pressure gradient magnitude. Using a Particle Expression Behavior,

these quantities can be computed and compared to a user-defined

threshold to determine if they will transition from bulk water to

spray or from spray to mist. We have found that the pressure gra-

dient magnitude is usually the best indicator for transitions and

generalizes well across many different scales and scenarios. Intu-

itively, if the magnitude is small the fluid is in free fall, and hence

transition from bulk fluid to spray is appropriate.

As we transition from bulk water to spray to mist, we split the

particles into smaller ones to provide more resolution and fidelity

as we progressively move to less expensive simulation methods.

Because FLIP simulations typically have a uniform particle radius,

we initialize split particle radii using an inverse cubic distribution

tuned by the user. The radius and spread of these splits can also

optionally be weighted based on the transition metric; for exam-

ple very fast moving particles with a very low pressure gradient

magnitude would split into smaller, more frequent particles that are

further apart than particles that barely exceed the transition thresh-

old. This method combined with BDC avoids unnatural uniform

distributions as the particles become ballistic. When mist or spray

particles re-enter the fluid surface of the bulk water, their radii are

adjusted and they are transitioned back into FLIP particles.

Our state machine approach is demonstrated in the boat wake ex-

ample shown in Figure 15. This result was generated automatically

using Loki with very little upfront tuning and no post-processing.

This demonstrates that Loki can be used to quickly generate high-

fidelity water simulations without requiring senior technical artists.

Fig. 15. Motor boat. Example frame of a boat wake simulation that uses
our state machine approach (top) is shown with a breakdown of the water
states (bottom). As indicated in Figure 14, bulk water is shown in blue, spray
in green, and mist in red. ©Wētā FX.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:15

Fig. 16. Palm tree. A tree represented with elastons coupled with a wind
volume blowing from left to right. ©Wētā FX.

Furthermore, we have found that this approach has simplified our

production review process. Without this method, a time-consuming

approval was required at each stage of water splash simulation: one

for the bulk fluid, another for the secondary spray, and more for any

additional mist passes. With our state machine approach, only one

review is typically needed because each of the states is successfully

simulated simultaneously. This is all done at a fraction of the com-

putational cost of simulating a comparably high-resolution FLIP

simulation and is demonstrative of the flexibility beyond traditional

coupling, using the many solvers available within Loki.

7.2 Windy Tree
Our next example shows the modularity of the Loki architecture by

simulating a tree in the wind based on a minimal number of changes

from our previous hair in the wind example, see Figure 16.

Plants often have a very high geometric complexity at multiple

scales ranging from tiny stems to massive trunks. Efficiently captur-

ing that geometry can lead to a range of dimensionality required,

such as thick trunks with 3D geometry, large leaves with 2D surfaces,

and long branches with 1D curves. We have found elastons [Martin

et al. 2010] to be an excellent model for plants due to the ease it

represents a variety of dimensionality within the same object.

In keeping with our Avoid Combinatorial Explosion, we only

need to make a few changes starting from our hair in the wind

Solver Setup to simulate a tree as elastons coupled with the wind,

as shown in Figure 17:

• The Hair Group is changed to a Plant Group by updating

the Curves Object to a Geometry Object to work on general

geometry instead of only curves.

• The Stretching Constraint and Bending Constraint are re-

moved as they were tied to the Curves Object to represent

discrete elastic rods.

• An Elaston Constraint is added to assign the codimensional

elaston model to the Geometry Object.

Within the Plant Group, the Attachment Constraint and Collision

Constraint already work for all kinds of geometry, and therefore do

not need to change. The Wind Group contains everything needed

to simulate the wind independent of any geometry it acts on, and

hence also remains unchanged. Finally, the Root Group Behaviors,

including Gravity Force, Coupled Buoyancy, and Coupled Drag

Force, work on all kinds of geometry and remain unchanged as well.

The ease of changing individual components, such as the geome-

try representation, while maintaining the same functionality and

interactions with other components greatly eases the configuration

burden on the user by helping them adopt Best-in-Class models

without significant changes to similar familiar setups.

7.3 Super Solver Setup
Our next example demonstrates how we leverage the flexibility

and modularity of our framework to reduce setup burden for our

users. We present two scenes involving elastic objects (see Figure 2):

one involves a fluffy elastic bunny settling down for a nap on a

hammock; and in the other, an animated character, complete with

hair and clothing, leaps from a diving board into a pool. The first

example shows strong coupling between 1D, 2D, and 3D elastic

solids through frictional contact and rigid attachments (described in

Section 6.3). Note that the bunny’s degrees of freedom are located on

an enclosing tetrahedral lattice, whereas attachments and collisions

are resolved on the surface mesh. The second simultaneously deals

with free-surface fluids, elastic solids, and the coupling in between.

For both of these examples, we use discrete elastic rods [Bergou

et al. 2010, 2008] to simulate the hair and fur. Our thin shell model

is based on Volino et al. [2009] and Grinspun et al. [2003], which we

use to simulate both the cloth and the diving board. We simulate the

tetrahedral lattice enclosing the bunny using a linear FEM model

with the Stable Neo-Hookean constitutive model [Smith et al. 2018].

The frictional contact between each of these structures is reliably

handled by the recent technique from Daviet [2020]. In the second

example, we simulate the water using a FLIP method [Zhu and

Bridson 2005] enhanced with buoyancy and drag forces on the

elastic solids [Stomakhin et al. 2020]. Additionally, the air is treated

as an incompressible fluid and therefore contributes to the solids’

dynamics through two-way coupled drag force. Moreover, we have

wet hair and wet cloth solver components, based on [Fei et al. 2017]

and [Fei et al. 2018] respectively, whichmodel the internal fluid flows

and the resulting cohesion on the hair and cloth, and transitions

to/from external fluids through water absorption and dripping. We

Root Group

Plants Group

Geometry Object

Elaston Constraint

Attachment Constraint

Collision Constraint

Wind Group

Volume Object

Pressure Material

Boundary Constraint

Gravity Force

Coupled Buoyancy

Coupled Drag Force

Adds plants geometry to the system

Plants are elastic and integrated using elastons

Plants are attached to the ground

Plants collide with each other

Adds volumetric object to the system

Volumes are incompressible

Volumes are affected by a boundary condition

Vorticity confinement is applied to velocity field

Adds gravity force

Adds buoyancy interaction between fluids and solids

Vorticity Confinement

Adds drag force interaction between fluids and solids

Fig. 17. Solver Setup for elaston plants coupled with a volumetric wind. Min-
imal changes are needed from the hair in wind Solver Setup demonstrated
in Figure 5. ©Wētā FX.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:16 • Lesser, S. et al

Fig. 18. Brasier fire. Example of a fire simulation. ©Wētā FX.

opt for a weak coupling model between the solids and fluids, as

described in Section 5.1. This way, both scenes are completed within

a single simulation pass.

Despite the two scenes being quite different in nature and com-

prising a number of interacting solvers, we use the same conceptual

simple user-facing Solver Setup for both simulations. In our Behav-

ior tree, we have four Groups dedicated to individual phenomena:

elastic rod simulation, elastic shell simulation, elastic solids, and

fluids. Behaviors related to coupling, such as collision, attachments,

drag, buoyancy, etc. appear outside the four groups. In practice, we

construct a Solver Setup like this once and reuse it for all scenes

featuring characters or elastics. If no fluid appears in a scene, all

the fluid-related Behaviors (including fluid-solid coupling) are au-

tomatically disabled; similarly for rods, shells, and elastic solids.

Material parameters can be set from the host application to over-

ride default values encoded within the Solver Setup. This workflow

makes it easy and efficient to set up new scenes, regardless of the

complexity and number of interacting phenomena. As the semantic

meaning assigned to each of our Behaviors generally remains fixed,

Solver Setups rarely require updates, even as we regularly add new

features.

7.4 Explosions and Fire
The Eulerian fluid solver in Loki is based on the common method

of operator splitting [Stam 1999]. In addition to the typical fluid dy-

namics components (pressure solver, viscosity solver, and advection)

it has a number of components for thermodynamics, chemistry, tur-

bulence enhancement, and artistic control. These components can

be combined in the Solver Setup to produce a number of different

volumetric phenomena, such as combustion (fire and explosions),

smoke, dust, mist, formation of clouds, and air fields for coupling

with other solvers. The initial shape of an explosion is modeled

using a lightweight procedural particle animation in Houdini. The

particles are converted to a volumetric representation that includes

fields for fuel, temperature, and velocity. These volumetric fields

are used as emission volumes, and these are only present for the

initial 10-20 frames. After that the volumetric solver takes over and

evolves the explosion.

Emission is either done using stamping, which sets values directly

based on user-provided volumes, or using a fluxed approach that

sets a boundary condition for pressure solver and advection. Prior

to emission, the Volume Object creates Buckets based on the bounds

of the emission volume. Additional Buckets can be created based

on the Bucket subset of other Objects.

Padding adds layers of Buckets around the simulated quantities,

to ensure that there exist voxels to advect into; or to allow the

simulation, if required, to capture fluid flow in a wider region than

the domain of immediate visual interest. There are typically 3-4

layers of Buckets surrounding a flame front or smoke plume, as

more than that is not computationally feasible for simulations with

a large Bucket count (>1M). A common way to increase world-space

size of the padding layer, if needed, is through the use of spatial

adaptivity.

Advection is done using the typical tracing approach, and supports
a number of different schemes, such as Semi-Lagrangian, MacCor-

mack and BFECC [Selle et al. 2008], and also various higher-order in-

terpolation schemes. Dissipation reducing time integration methods

such as Advection-Reflection [Narain et al. 2019] are also available.

The volumetric fluid solver is designed to handle large simulations

by distributing the simulation across multiple machines using MPI.

A typical production quality simulation of a large scale explosion

requires simulating with a voxel size of 2-5cm, which can result in

millions of Buckets of volumetric data and billions of voxels. This

may not fit on a single machine, and often needs to be divided over

4-8 machines.

Most of the volumetric algorithms only depend on data from the

current Bucket or the immediate neighborhood of Buckets. Trac-

ing stands out, in that it is completely dependent on the velocity

magnitudes. Large velocities could lead to traces that end up further

than the immediate Bucket neighborhood. A conservative approach

would be to enforce a strict CFL condition, but this is not practical

for simulations with fast-moving emitters or colliders. In order for

advection to scale well on MPI, we classify traces as local or foreign

depending on whether they end up in a Bucket that is owned by

the local process or a different process. We then bundle traces based

on the destination process, and transmit the trace data to other

processes. Once transmitted, each process interpolates advected

quantities using local data. Finally, the interpolated quantities are

transmitted back to the process where the traces originated.

The volumetric fluid solver supports spatial adaptivity by varying

the size of the Buckets. Spatial adaptivity has a few typical use cases:

• Use a wide padding of successively coarser Buckets around

an explosion or smoke plume to be able to capture more of

the flow of the surrounding air. This produces more realis-

tic shapes and would not be feasible when simulating with

uniformly sized Buckets.

• Adjust the size of the Buckets based on simulation quantities,

e.g. use the finest resolution near flame front, intermediate

resolution for smoke, and the coarsest one away from regions

of visual interest.

• Adjust the size of the Buckets based on a camera frustum,

where the size of the Buckets increases with the distance from

the camera position.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:17

The implementation needs special consideration at the border

between Buckets of different sizes and is mainly based on the meth-

ods described in [Ando and Batty 2020]. Examples of an explosion

and a fire produced with our solver are shown in Figures 1 and 18.

The Solver Setup for explosions can be extended with additional

Groups of one-way or two-way coupled particle systems for soot

particles and embers. This avoids having to set up and run additional

passes for these kinds of phenomena.

7.5 Foam and guided bubbles
Finally, we show a production example of foam and bubbles, com-

monly referred to as whitewater. The method is based off [Wretborn

et al. 2022] which separates the simulation technique into two sep-

arate solvers. Particle based bubbles are two-way coupled with a

sparse, Eulerian fluid with interaction defined as a force exchange

of buoyancy and drag. The fluid is guided from a pre-cached fluid

simulation, ensuring it can be run as a secondary process. Foam is

simulated as a viscous fluid using SPH for discretization constrained

to the fluid surface, approximating thin and wet foam. Interactions

with foam and bubbles are implemented as transitions: momentum

is exchanged by moving particles between the two simulation meth-

ods based on their proximity to the fluid surface. An example can

be seen from Figure 19.

In total there are 3 separate Objects in this system (bubbles, foam,

the sparse fluid) that all interact weakly. The resulting Solver Setup

complexity is similar to that of Figure 5, with the difference being

one more Group to represent the foam.

7.6 Additional fluid examples
Figure 11 shows a thin film water simulation following [Stomakhin

et al. 2019]. Figure 3 demonstrates coupling of a FLIP liquid with

the surrounding Eulerian wind to produce a large scale waterfall.

8 DISCUSSION
We have described our proposed framework, and we have shown

that it can successfully be used to simulate a diverse set of appli-

cations. We will now detail the strengths and weaknesses of our

method based on our experience using the system in production for

approximately four years.

8.1 Strengths of Loki
There are a number of ways in which Loki’s design decisions have

played to the framework’s advantage.

Single Consistent System. Loki’s design means that we can sim-

ulate a wide range of phenomena within a single framework, in-

cluding liquids, smoke, fire, explosions, hair, muscle, cloth, feathers,

plants, and rigid bodies. There are many benefits to this approach.

By having a single solution for simulations of all kinds, we can reuse

common data structures and techniques. Implementing a feature

or improvement to one component, such as collision handling, ben-

efits several different domains simultaneously, with only modest

overhead. Conforming to Loki’s guiding principles (adherence to

physical units in particular) means that little effort is needed to

introduce coupling between any pair of domains.

No Compromises on Quality. Compared to dedicated solvers, Loki

delivers qualitatively equivalent results. Despite its requirements

Fig. 19. Rocky shore. A secondary simulation of foam (white) and bubbles
(blue) on a pre-cached fluid simulation (not shown). ©Wētā FX.

on structure, it is rare that a state of the art method cannot be ef-

fectively implemented within these bounds. Physical fidelity can be

obtained in all domains without one domain enforcing burdensome

restrictions on another.

Transitions between Representations. Loki grants the ability to

abstract beyond a single representation of a material by dynami-

cally transitioning from one domain to another while preserving

properties such as mass, energy, and momentum. Through these

transitions, we can choose the discretization that best suits the needs

of a particular scene; for example, bulk fluid simulated in a large

Eulerian domain may be transformed into Lagrangian particles to

capture highly detailed splashes and droplets around colliders.

Modularity. Because of its structure, Loki allows developers to
experiment with, deploy, and publish novel advancements within

the larger system. These improvements can immediately impact

multiple domains. For instance, novel geometric representations

can be added without significant changes to constitutive models,

collision algorithms, attachments constraints, coupling algorithms,

and so on. Additionally, the Solver Setup modular declarative design

makes it easy to reuse Groups, such as starting from a dry hair

Solver Setup as the Hair Group for a wet character simulation.

8.2 Areas for Future Improvement
Loki’s design decisions and requirements in some areas lead to the

following compromises. We hope to explore ways to reduce the

scale of these drawbacks as part of future development.

Development Burden. Because of its strict structures and require-

ments, Loki is not well suited for rapid prototyping by simulation

developers. Additional development overhead is inherent to adding

new components compared to a standalone solver. For this reason,

when experimenting with novel concepts, we often test prototypes

externally before porting them to Loki.

Memory Overhead for Solids. There is some additional memory

overhead to generically handle 1D (hair), 2D (cloth), and 3D (muscle)

geometric elements together. It is common to represent 3D solids

using positional degrees of freedom, but 2D solids may need a

separate degree of freedom dimension for the thickness. Similarly,

the discrete elastic rods representation, which we use for 1D hair,

has to represent twist along edges in addition to node positions.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

50:18 • Lesser, S. et al

Table 1. Simulation times, resolutions, and settings for some of the examples presented in this paper. Numbers of particles, voxels, and time per frame are
reported for representative frames that correspond to the ones shown in the figures.

Example Particle count Voxel count Steps per frame Newton iterations Time per frame Memory Machine
Palm tree 335K 1.38M 2 1 4s 6.1GB 24 Cores

Thin film drips 1.37M 5.79M 100 1 5m 18s 4.4GB 24 Cores

Interacting solids 950K - 2 2 3m 49s 6GB 24 Cores

Brasier fire - 488M 2 1 24m 28s 63GB 24 Cores

Swimming character 8.8M 35.3M 3 2 6m 10s 57GB 52 Cores

Waterfall 14.2M 173M 2 1 7m 56s 105GB 52 Cores

Motor boat 117M 38.9M 6 1 1m 42s 99GB 64 Cores

Rocky shore 4.0M 18.4M 4 1 1m 28s 35GB 64 Cores

Explosion (MPI) - 957M 5 1 10m 28s 4 x 60GB 4 x 24 Cores

We address this disparity by having any node of any dimension

represented by both a position and an affine coordinate frame. This

gives us uniformity in representation across different kind of solids.

However, these additional coordinates correspond to more degrees

of freedom than would be needed for a specialized simulator, which

can result in additional overhead for storage and degree of freedom

reduction (e.g., reducing an affine frame to rod twist) during system

assembly.

Performance Overhead for Solids. We currently require neighbor-

ing degrees of freedom to live within a single Bucket neighborhood

of the grid domain. This imposes aminimumBucket size in our scene

relative to the scale of the longest edge in our geometry. Because we

parallelize most operations over Buckets, this has performance im-

plications: large Bucket sizes imply poor parallelization. To address

this, we would like to explore ways to decouple the domain and

geometry scales, as well as better domain decomposition control

for elastic solids.

MPI Requirements. In order to support distribution across multiple

machines, all algorithms need to respect a set of MPI-related rules

such as limiting data access to local neighborhoods and careful

synchronization, which puts additional burden on the developer.

Parameter Complexity. Loki’s feature set has grown very large,

which has resulted in a large number of parameters; this can some-

times be overwhelming when users are trying to understand how

to guide specific adjustments from the default results, with so many

interacting components. We would like to explore ways of offer-

ing optional additional layers of simplified controls for users who

want a reduced interface. We would also like to investigate select-

ing more parameters automatically; for example choosing the best

linear equation solver, or the ideal Bucket size.

8.3 Areas for Future Exploration
In addition to ameliorating these drawbacks, we intend to extend

Loki in several directions to make it a more capable and modern

simulation solver. Future work includes incorporating more solvers

into Loki’s framework, such as an atmospheric cloud simulator to

ensure that Loki remains up to date with the state of the art, as

simulation fidelity improves. In order to improve the performance

of our simulations, we would like to employ wider use of spatial

adaptivity for fluids and varying topology for meshes, reducing the

amount of data to be processed in regions where high resolution is

not necessary. Detecting and resolving collisions between all kinds

of geometries and representations is a bottleneck in many simula-

tions, especially those that are heavy in collisions; we would like

to explore ways to expedite this step of the solver. Due to hard-

ware limitations in our production environment, we have steered

away from incorporating GPU programming into Loki; but in the

future we would like to explore how highly parallel devices could

be used within the Loki paradigm. Our investment into distributed

data structures means that Loki could one day support multi-GPU

architectures.

9 CONCLUSION
This paper presents our new multi-physics framework, Loki, as a

generalized tool for robust simulation of various phenomena at state-

of-the-art fidelity in the VFX industry. Distinguished from previous

simulation tools in production, Loki’s coupling is considered key

from the very beginning of its design and is hence on by default for

many types of elements, including elastic solids, rigid bodies, fluids,

and secondaries. The front-end configuration is carefully planned so

that users do not have to understand or define the order of execution

in the solver, despite creating very complex multiple-element setups

with regular feature updates. The resulting system can deal with

scenes from many millions of elements on a single machine to multi-

billion elements distributed over clusters. With all these advantages,

Loki has successfully been used in many major productions since

2018 and has seen steadily increasing artist adoption even when

given the option of any major third-party solver.

10 ACKNOWLEDGEMENTS
We are thankful to the many people besides the authors of this

article who contributed to Loki. Niall Ryan and Michael Forot were

particularly influential in laying a strong early architectural foun-

dation. John Farrow, Nikolay Ilinov, Marcus Schoo, Greg Klar, Dan

Elliott, Stephen Ward, Clemens Sielaff, Vincent Bonnet, Marie-Lena

Eckert, Andreas Soderstrom, Pavel Jurkas, and Andrew Harvey each

contributed multiple years of research or engineering development

to Loki. We are also thankful for leadership and management sup-

port from Christoph Sprenger, Ken Museth, Millie Maier, Risha

Patel, Barton Gawboy, SamMartin, Julia Jones, Daniel Hodson, Luca

Fascione, and Joe Marks.

Many talented artists have worked closely with the Simulation

Research team and were critical for guiding Loki to be successful

through their constructive feedback and long-term championing

of the system. Thank you to Gary Boyle, Kevin Blom, Johnathon

Nixon, Alex Nowotny, David Caeiro, Nicholas Illingworth, Adrien

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

Loki: A Unified Multiphysics Simulation Framework for Production • 50:19

Rollet, Christopher Dean, Rahul Deshprabhu, Florian Hu, and Ziggy

Kucas from the FX department. Thank you to Gios Johnston, John

Homer, Julian Butler, Andrea Merlo, Tim Teramoto, Jefri Haryono,

and Carlos Lin from the Creatures department. And thank you to

Louis-Daniel Poulin, Alex Klaricich, and Stephen Cullingford from

additional artist departments.

Thank you to Tamar Shinar and Jon Hertzig who provided feed-

back and editing on this article, and thank you to Kayvon Fatahalian

whose "What Makes a (Graphics) Systems Paper Beautiful" notes

gave us the structure needed to undertake writing a systems paper.

Finally, Loki was made possible thanks to Joe Letteri whose vision

for better visual effects through fundamental understanding of the

physical world gave us the time, resources, and invaluable guidance

to keep us true to that path.

11 GLOSSARY
Action A developer class dedicated to modifying simulation

data stored in one or more Objects. Derived classes include

Forces, Constraints, and Operators. 7

Behavior A user-facing construct that defines a high-level unit

of computation such as adding an Object into the scene or

operating on the existing Objects. 4

Bucket A container that stores spatially divided simulation

data. Buckets may be iterated over in parallel, or transferred

between ranks in an MPI-enabled simulation. 8

Constraint An Action that calculates non-negative energies

from groups of degrees of freedom, and calculates the contri-

butions to the system of equations to minimize this energy.

An example is spring attachments. 10

Force An Action that calculates a force to be applied to an Ob-

ject, with the assumption that the force calculation does not

depend on neighboring degrees of freedom. Examples include

gravity and fluid drag. 10

Grid Domain A partitioning of space where Buckets are allo-

cated sparsely for grid cells containing simulation data. 8

Group A user-facing construct that may contain Behaviors or

Groups recursively. All Behaviors within the Group interact

with one another. 4

Object A representation of degrees of freedom that is simulated

forward in time and may store a mix of internal data repre-

sentations. Examples of Objects include Curves Object for

hair simulation or Volume Object for wind simulation. 7

Operator An Action that affects Objects in ways that do not

fit into the paradigm of Constraints or Forces. An example is

vorticity confinement. 12

Solver Setup A user-facing collection of Groups, Behaviors, and

parameters that define how simulation data is read and pro-

cessed. 4

Stage A discrete, statically defined period of time when Behav-

iors can schedule execution of specific Tasks. 6

Task A unit of computation required by a Behavior to be per-

formed at a specific Stage. 5

REFERENCES
Muzaffer Akbay, Nicholas Nobles, Victor Zordan, and Tamar Shinar. 2018. An Extended

Partitioned Method for Conservative Solid-Fluid Coupling. ACM Trans. Graph. 37,

4, Article 86 (jul 2018), 12 pages.

Ryoichi Ando and Christopher Batty. 2020. A Practical Octree Liquid Simulator with

Adaptive Surface Resolution. ACM Trans. Graph. 39, 4, Article 32 (jul 2020), 17 pages.
R. Barrett, M.W. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.

Pozo, C. Romine, and H. van der Vorst. 1994. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied

Mathematics. https://books.google.co.kr/books?id=8IkWgiZ8kOwC

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational

Framework for Accurate Solid-Fluid Coupling. In ACM SIGGRAPH 2007 Papers
(SIGGRAPH ’07). Association for ComputingMachinery, New York, NY, USA, 100–es.

Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive Simulation of Rigid Body

Dynamics in Computer Graphics. Comput. Graph. Forum 33, 1 (feb 2014), 246–270.

Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.

2010. Discrete Viscous Threads. In ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10).
Association for Computing Machinery, New York, NY, USA, Article 116, 10 pages.

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grin-

spun. 2008. Discrete Elastic Rods. In ACM SIGGRAPH 2008 Papers (SIGGRAPH ’08).
Association for Computing Machinery, New York, NY, USA, Article 63, 12 pages.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew

Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical Simulation

on CPUs and GPUs. 35, 2, Article 21 (may 2016), 12 pages. https://doi.org/10.1145/

2892632

Morten Bojsen-Hansen, Michael Bang Nielsen, Konstantinos Stamatelos, and Robert

Bridson. 2021. Spatially Adaptive Volume Tools in Bifrost. In ACM SIGGRAPH 2021
Talks (SIGGRAPH ’21). Association for Computing Machinery, New York, NY, USA,

Article 2, 2 pages. https://doi.org/10.1145/3450623.3464642

Eddy Boxerman and Uri Ascher. 2004. Decomposing Cloth. In Proceedings of the
2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’04).
Eurographics Association, Goslar, DEU, 153–161. https://doi.org/10.1145/1028523.

1028543

Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2019.

The Reduced Immersed Method for Real-Time Fluid-Elastic Solid Interaction and

Contact Simulation. ACM Trans. Graph. 38, 6, Article 191 (nov 2019), 16 pages.

https://doi.org/10.1145/3355089.3356496

George E. Brown, Matthew Overby, Zahra Forootaninia, and Rahul Narain. 2018. Accu-

rate Dissipative Forces in Optimization Integrators. ACM Trans. Graph. 37, 6, Article
282 (dec 2018), 14 pages.

Gilles Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects.

ACM Trans. Graph. 39, 4, Article 61 (jul 2020), 16 pages.
Gilles Daviet and Florence Bertails-Descoubes. 2016. A Semi-Implicit Material Point

Method for the Continuum Simulation of Granular Materials. ACM Trans. Graph.
35, 4, Article 102 (jul 2016), 13 pages.

Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A Hybrid

Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM
Trans. Graph. 30, 6 (dec 2011), 1–12.

Denis Demidov. 2020. AMGCL - A C++ library for efficient solution of large sparse

linear systems. Software Impacts 6 (2020), 100037.
Pradeep Dubey, Pat Hanrahan, Ronald Fedkiw, Michael Lentine, and Craig Schroeder.

2011. PhysBAM: Physically Based Simulation. In ACM SIGGRAPH 2011 Courses
(SIGGRAPH ’11). Association for Computing Machinery, New York, NY, USA, Article

10, 22 pages.

David Eberle. 2018. Better Collisions and Faster Cloth for Pixar’s Coco. In ACM
SIGGRAPH 2018 Talks (SIGGRAPH ’18). Association for Computing Machinery, New

York, NY, USA, Article 8, 2 pages. https://doi.org/10.1145/3214745.3214801

François Faure, Christian Duriez, Hervé Delingette, Jérémie Allard, Benjamin Gilles,

Stéphanie Marchesseau, Hugo Talbot, Hadrien Courtecuisse, Guillaume Bousquet,

Igor Peterlik, and Stéphane Cotin. 2012. SOFA: A Multi-Model Framework for

Interactive Physical Simulation. In Soft Tissue Biomechanical Modeling for Computer
Assisted Surgery, Yohan Payan (Ed.). Studies in Mechanobiology, Tissue Engineering

and Biomaterials, Vol. 11. Springer, 283–321.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke.

In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). Association for Computing Machinery, New York, NY,

USA, 15–22.

Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A

Multi-Scale Model for Simulating Liquid-Fabric Interactions. ACM Trans. Graph. 37,
4, Article 51 (jul 2018), 16 pages.

Yun (Raymond) Fei, Henrique Teles Maia, Christopher Batty, Changxi Zheng, and Eitan

Grinspun. 2017. A Multi-Scale Model for Simulating Liquid-Hair Interactions. ACM
Trans. Graph. 36, 4, Article 56 (jul 2017), 17 pages.

Gene H. Golub and Charles F. van Loan. 2013. Matrix Computations (fourth ed.). JHU

Press. http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm

Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete

shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. Citeseer, 62–67.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

https://books.google.co.kr/books?id=8IkWgiZ8kOwC
https://doi.org/10.1145/2892632
https://doi.org/10.1145/2892632
https://doi.org/10.1145/3450623.3464642
https://doi.org/10.1145/1028523.1028543
https://doi.org/10.1145/1028523.1028543
https://doi.org/10.1145/3355089.3356496
https://doi.org/10.1145/3214745.3214801
http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm

50:20 • Lesser, S. et al

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling

Water and Smoke to Thin Deformable and Rigid Shells. In ACM SIGGRAPH 2005
Papers (SIGGRAPH ’05). Association for Computing Machinery, New York, NY, USA,

973–981.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019. Taichi: A Language for High-Performance Computation on Spatially Sparse

Data Structures. ACM Trans. Graph. 38, 6, Article 201 (nov 2019), 16 pages. https:

//doi.org/10.1145/3355089.3356506

Ales Janka. 2007. Smoothed aggregation multigrid for incompressible flows. PAMM 7

(12 2007), 1025901 – 1025902.

Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity

for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152
(jul 2017), 14 pages.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle.

2016. The Material Point Method for Simulating Continuum Materials. In ACM
SIGGRAPH 2016 Courses (SIGGRAPH ’16). Association for Computing Machinery,

New York, NY, USA, Article 24, 52 pages.

Richard Jones and Richard Southern. 2017. Physically-Based Droplet Interaction. In

Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation
(SCA ’17). Association for Computing Machinery, New York, NY, USA, Article 5,

10 pages.

Theodore Kim and David Eberle. 2020. Dynamic Deformables: Implementation and

Production Practicalities. In ACM SIGGRAPH 2020 Courses (SIGGRAPH ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 23, 182 pages.

https://doi.org/10.1145/3388769.3407490

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I.W. Levin, Shinjiro Sueda,

Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar, Wojciech Matusik,

and Saman Amarasinghe. 2016. Simit: A Language for Physical Simulation. ACM
Trans. Graph. 35, 2, Article 20 (mar 2016), 21 pages. https://doi.org/10.1145/2866569

Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu

Jiang, and Joseph Teran. 2016. Drucker-Prager Elastoplasticity for Sand Animation.

ACM Trans. Graph. 35, 4, Article 103 (jul 2016), 12 pages.
Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. 2006. Multiple Inter-

acting Liquids. ACM Trans. Graph. 25, 3 (jul 2006), 812–819.
Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008. Two-Way Coupled

SPH and Particle Level Set Fluid Simulation. IEEE Transactions on Visualization and
Computer Graphics 14, 4 (2008), 797–804. https://doi.org/10.1109/TVCG.2008.37

Chaoyang Lyu, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2021. Fast and Versatile

Fluid-Solid Coupling for Turbulent Flow Simulation. ACM Trans. Graph. 40, 6,
Article 201 (dec 2021), 18 pages. https://doi.org/10.1145/3478513.3480493

Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph. 32,
4, Article 104 (jul 2013), 12 pages.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-

Based Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th
International Conference on Motion in Games (MIG ’16). Association for Computing

Machinery, New York, NY, USA, 49–54.

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan

Jeschke, and Matthias Müller. 2019. Small Steps in Physics Simulation. In Proceedings
of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA ’19). Association for Computing Machinery, New York, NY, USA, Article 2,

7 pages.

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.

2010. Unified Simulation of Elastic Rods, Shells, and Solids. In ACM SIGGRAPH 2010
Papers (SIGGRAPH ’10). Association for Computing Machinery, New York, NY, USA,

Article 39, 10 pages.

A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids

Simulation on Large Grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ’10). Eurographics Association, Goslar,
DEU, 65–74.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph

Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with

Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (jul 2011), 12 pages.
Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bernhard

Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and Miguel A.

Otaduy. 2013. Modeling and Estimation of Internal Friction in Cloth. ACM Trans.
Graph. 32, 6, Article 212 (nov 2013), 10 pages.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position

Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (apr 2007), 109–118.
Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology.

ACM Trans. Graph. 32, 3, Article 27 (jul 2013), 22 pages. https://doi.org/10.1145/

2487228.2487235

Ken Museth. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data Structure For

Real-Time Rendering And Simulation (SIGGRAPH ’21). Association for Computing

Machinery, New York, NY, USA, Article 1, 2 pages. https://doi.org/10.1145/3450623.

3464653

Rahul Narain, Jonas Zehnder, and Bernhard Thomaszewski. 2019. A Second-Order

Advection-Reflection Solver. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article
16 (jul 2019), 14 pages.

Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A Hybrid

Lagrangian-Eulerian Formulation for Bubble Generation and Dynamics. In Proceed-
ings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA ’13). Association for Computing Machinery, New York, NY, USA, 105–114.

Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fedkiw.

2008. Two-Way Coupling of Fluids to Rigid and Deformable Solids and Shells. ACM
Trans. Graph. 27, 3 (aug 2008), 1–9.

Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek Rossignac.

2008. An Unconditionally Stable MacCormack Method. J. Sci. Comput. 35 (06 2008),
350–371.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:

A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans.
Graph. 33, 6, Article 205 (nov 2014), 12 pages. https://doi.org/10.1145/2661229.

2661269

Morten Silcowitz, Sarah Niebe, and Kenny Erleben. 2010. Projected Gauss-Seidel

Subspace Minimization Method for Interactive Rigid Body Dynamics - Improving

Animation Quality using a Projected Gauss-Seidel Subspace Minimization Method.

GRAPP 2010 - Proceedings of the International Conference on Computer Graphics
Theory and Applications 229, 38–45.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean

Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (mar 2018), 15 pages.

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley

Publishing Co., USA, 121–128.

Jos Stam. 2009. Nucleus: Towards a unified dynamics solver for computer graphics. In

2009 11th IEEE International Conference on Computer-Aided Design and Computer
Graphics. 1–11. https://doi.org/10.1109/CADCG.2009.5246818

Alexey Stomakhin, AndrewMoffat, and Gary Boyle. 2019. A Practical Guide to Thin Film

and Drips Simulation. In ACM SIGGRAPH 2019 Talks (SIGGRAPH ’19). Association
for Computing Machinery, New York, NY, USA, Article 72, 2 pages.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.

2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4,
Article 102 (jul 2013), 10 pages.

Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran,

and Andrew Selle. 2014. Augmented MPM for Phase-Change and Varied Materials.

ACM Trans. Graph. 33, 4, Article 138 (jul 2014), 11 pages.
Alexey Stomakhin, Joel Wretborn, Kevin Blom, and Gilles Daviet. 2020. Underwater

Bubbles and Coupling. In ACM SIGGRAPH 2020 Talks (SIGGRAPH ’20). Association
for Computing Machinery, New York, NY, USA, Article 2, 2 pages.

Tetsuya Takahashi and Christopher Batty. 2020. Monolith: A Monolithic Pressure-

Viscosity-Contact Solver for Strong Two-Way Rigid-Rigid Rigid-Fluid Coupling.

ACM Trans. Graph. 39, 6, Article 182 (nov 2020), 16 pages.
Tetsuya Takahashi and Christopher Batty. 2021. FrictionalMonolith: A Monolithic

Optimization-Based Approach for Granular Flow with Contact-Aware Rigid-Body

Coupling. ACM Trans. Graph. 40, 6, Article 206 (dec 2021), 20 pages.
Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation

Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6, Article 245 (oct 2015),

13 pages.

Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel Melanz,

Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan Negrut. 2016.

Chrono: An Open Source Multi-physics Dynamics Engine. In Lecture Notes in
Computer Science. Springer International Publishing, 19–49.

Yun Teng, David I. W. Levin, and Theodore Kim. 2016. Eulerian Solid-Fluid Coupling.

ACM Trans. Graph. 35, 6, Article 200 (nov 2016), 8 pages. https://doi.org/10.1145/

2980179.2980229

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable

Constrained Dynamics. ACM Trans. Graph. 34, 4, Article 132 (jul 2015), 10 pages.
Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A simple approach

to nonlinear tensile stiffness for accurate cloth simulation. ACM Transactions on
Graphics 28, 4, Article 105 (2009).

Joel Wretborn, Sean Flynn, and Alexey Stomakhin. 2022. Guided Bubbles and Wet

Foam for Realistic Whitewater Simulation. ACM Trans. Graph. 41, 4, Article 117 (jul
2022). https://doi.org/10.1145/3528223.3530059

Tao Yang, Jian Chang, Bo Ren, Ming C. Lin, Jian Jun Zhang, and Shi-Min Hu. 2015. Fast

Multiple-Fluid Simulation Using Helmholtz Free Energy. ACM Trans. Graph. 34, 6,
Article 201 (oct 2015), 11 pages. https://doi.org/10.1145/2816795.2818117

David M. Young. 1971. Chapter 4 - CONVERGENCE OF THE BASIC ITERATIVE

METHODS. In Iterative Solution of Large Linear Systems, David M. Young (Ed.).

Academic Press, 106–139.

Yongning Zhu and Robert Bridson. 2005. Animating Sand as a Fluid. ACM Trans. Graph.
24, 3 (jul 2005), 965–972.

ACM Trans. Graph., Vol. 41, No. 4, Article 50. Publication date: July 2022.

https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3388769.3407490
https://doi.org/10.1145/2866569
https://doi.org/10.1109/TVCG.2008.37
https://doi.org/10.1145/3478513.3480493
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/3450623.3464653
https://doi.org/10.1145/3450623.3464653
https://doi.org/10.1145/2661229.2661269
https://doi.org/10.1145/2661229.2661269
https://doi.org/10.1109/CADCG.2009.5246818
https://doi.org/10.1145/2980179.2980229
https://doi.org/10.1145/2980179.2980229
https://doi.org/10.1145/3528223.3530059
https://doi.org/10.1145/2816795.2818117

	Abstract
	1 Introduction
	2 Related Works
	2.1 Multiphysics methods
	2.2 Multiphysics frameworks

	3 The Architecture
	3.1 Design Principles

	4 User-Facing Design
	4.1 Declarative Configuration
	4.2 Data Flow

	5 Developer-Facing Design
	5.1 Simulation Pipeline
	5.2 Intermediate Layers
	5.3 Fundamental Data Types
	5.4 Data Access Patterns

	6 Implementation
	6.1 Objects
	6.2 Forces
	6.3 Constraints
	6.4 Operators
	6.5 Linear Equation Solvers

	7 Applications
	7.1 Boat Wake
	7.2 Windy Tree
	7.3 Super Solver Setup
	7.4 Explosions and Fire
	7.5 Foam and guided bubbles
	7.6 Additional fluid examples

	8 Discussion
	8.1 Strengths of Loki
	8.2 Areas for Future Improvement
	8.3 Areas for Future Exploration

	9 Conclusion
	10 Acknowledgements
	11 Glossary
	References

